Suppr超能文献

花色素苷生物合成的抑制剂。

Repressors of anthocyanin biosynthesis.

机构信息

Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA.

出版信息

New Phytol. 2021 Aug;231(3):933-949. doi: 10.1111/nph.17397. Epub 2021 May 28.

Abstract

Anthocyanins play a variety of adaptive roles in both vegetative tissues and reproductive organs of plants. The broad functionality of these compounds requires sophisticated regulation of the anthocyanin biosynthesis pathway to allow proper localization, timing, and optimal intensity of pigment deposition. While it is well-established that the committed steps of anthocyanin biosynthesis are activated by a highly conserved MYB-bHLH-WDR (MBW) protein complex in virtually all flowering plants, anthocyanin repression seems to be achieved by a wide variety of protein and small RNA families that function in different tissue types and in response to different developmental, environmental, and hormonal cues. In this review, we survey recent progress in the identification of anthocyanin repressors and the characterization of their molecular mechanisms. We find that these seemingly very different repression modules act through a remarkably similar logic, the so-called 'double-negative logic'. Much of the double-negative regulation of anthocyanin production involves signal-induced degradation or sequestration of the repressors from the MBW protein complex. We discuss the functional and evolutionary advantages of this logic design compared with simple or sequential positive regulation. These advantages provide a plausible explanation as to why plants have evolved so many anthocyanin repressors.

摘要

花色素苷在植物的营养组织和生殖器官中发挥着多种适应性作用。这些化合物的广泛功能需要对花色素苷生物合成途径进行精细调控,以允许色素沉积的适当定位、时间和最佳强度。虽然人们已经充分认识到,在几乎所有开花植物中,花色素苷生物合成的关键步骤是由一个高度保守的 MYB-bHLH-WDR(MBW)蛋白复合物激活的,但花色素苷的抑制似乎是由多种在不同组织类型中发挥作用并对不同发育、环境和激素信号作出反应的蛋白质和小 RNA 家族实现的。在这篇综述中,我们调查了花色素苷抑制剂的鉴定和分子机制特征方面的最新进展。我们发现,这些看似非常不同的抑制模块通过一种非常相似的逻辑起作用,即所谓的“双负逻辑”。花色素苷产生的大部分双负调控都涉及到信号诱导的抑制剂从 MBW 蛋白复合物中的降解或隔离。我们讨论了与简单或顺序正调控相比,这种逻辑设计的功能和进化优势。这些优势为植物为何进化出如此多的花色素苷抑制剂提供了一个合理的解释。

相似文献

1
Repressors of anthocyanin biosynthesis.
New Phytol. 2021 Aug;231(3):933-949. doi: 10.1111/nph.17397. Epub 2021 May 28.
2
Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors.
Plant Physiol Biochem. 2019 Mar;136:178-187. doi: 10.1016/j.plaphy.2019.01.024. Epub 2019 Jan 22.
3
Gene regulation networks generate diverse pigmentation patterns in plants.
Plant Signal Behav. 2014;9(9):e29526. doi: 10.4161/psb.29526.
4
Role of epigenetic and post-translational modifications in anthocyanin biosynthesis: A review.
Gene. 2023 Dec 15;887:147694. doi: 10.1016/j.gene.2023.147694. Epub 2023 Aug 23.
5
MYB-Mediated Regulation of Anthocyanin Biosynthesis.
Int J Mol Sci. 2021 Mar 18;22(6):3103. doi: 10.3390/ijms22063103.
7
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants.
Int J Mol Sci. 2022 Oct 2;23(19):11701. doi: 10.3390/ijms231911701.
9
The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway.
Nat Genet. 2015 Jan;47(1):92-6. doi: 10.1038/ng.3163. Epub 2014 Dec 1.
10
PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar.
Plant Cell Rep. 2017 Aug;36(8):1263-1276. doi: 10.1007/s00299-017-2151-y. Epub 2017 May 18.

引用本文的文献

3
Genome-wide identification of in Brassicaceae, with a focus on the expression pattern of regulating anthocyanin synthesis in crops.
Front Plant Sci. 2025 Jul 1;16:1629560. doi: 10.3389/fpls.2025.1629560. eCollection 2025.
4
Age-Specific Physiological Adjustments of to Sulfur Deficiency.
Plants (Basel). 2025 Jun 20;14(13):1907. doi: 10.3390/plants14131907.
5
StMYB308L and its regulatory role in flavonoid biosynthesis pathways in potato.
BMC Plant Biol. 2025 Jul 8;25(1):890. doi: 10.1186/s12870-025-06897-w.
6
Effects of different hormones on the color of tree peony leaves.
BMC Plant Biol. 2025 Jul 2;25(1):822. doi: 10.1186/s12870-025-06837-8.
7
Towards resilience: Transcriptional insights on flavonoid biosynthesis during peanut seed maturation phases.
PLoS One. 2025 Jul 1;20(7):e0325686. doi: 10.1371/journal.pone.0325686. eCollection 2025.
9
The Light-Regulated Transcription Factor Promotes Flavonoids in .
Int J Mol Sci. 2025 May 30;26(11):5292. doi: 10.3390/ijms26115292.
10

本文引用的文献

1
Shouting out loud: signaling modules in the regulation of stomatal development.
Plant Physiol. 2021 Apr 2;185(3):765-780. doi: 10.1093/plphys/kiaa061.
2
Regulation of glucosinolate biosynthesis.
J Exp Bot. 2021 Jan 20;72(1):70-91. doi: 10.1093/jxb/eraa479.
3
MiR156 regulates anthocyanin biosynthesis through targets and other microRNAs in poplar.
Hortic Res. 2020 Aug 1;7:118. doi: 10.1038/s41438-020-00341-w. eCollection 2020.
4
A novel R3 MYB transcriptional repressor, MaMYBx, finely regulates anthocyanin biosynthesis in grape hyacinth.
Plant Sci. 2020 Sep;298:110588. doi: 10.1016/j.plantsci.2020.110588. Epub 2020 Jul 1.
6
Multiple MYB Activators and Repressors Collaboratively Regulate the Juvenile Red Fading in Leaves of Sweetpotato.
Front Plant Sci. 2020 Jun 25;11:941. doi: 10.3389/fpls.2020.00941. eCollection 2020.
7
Transcriptional regulation of strigolactone signalling in Arabidopsis.
Nature. 2020 Jul;583(7815):277-281. doi: 10.1038/s41586-020-2382-x. Epub 2020 Jun 11.
10
Two MYB Proteins in a Self-Organizing Activator-Inhibitor System Produce Spotted Pigmentation Patterns.
Curr Biol. 2020 Mar 9;30(5):802-814.e8. doi: 10.1016/j.cub.2019.12.067. Epub 2020 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验