Zhang Li, Jindal Basu, Alaa Ahmed, Weinreb Robert, Wilson David, Segal Eran, Zou James, Xie Pengtao
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA.
Nat Commun. 2025 Jul 14;16(1):6486. doi: 10.1038/s41467-025-61754-6.
Semantic segmentation of medical images is pivotal in applications like disease diagnosis and treatment planning. While deep learning automates this task effectively, it struggles in ultra low-data regimes for the scarcity of annotated segmentation masks. To address this, we propose a generative deep learning framework that produces high-quality image-mask pairs as auxiliary training data. Unlike traditional generative models that separate data generation from model training, ours uses multi-level optimization for end-to-end data generation. This allows segmentation performance to guide the generation process, producing data tailored to improve segmentation outcomes. Our method demonstrates strong generalization across 11 medical image segmentation tasks and 19 datasets, covering various diseases, organs, and modalities. It improves performance by 10-20% (absolute) in both same- and out-of-domain settings and requires 8-20 times less training data than existing approaches. This greatly enhances the feasibility and cost-effectiveness of deep learning in data-limited medical imaging scenarios.
医学图像的语义分割在疾病诊断和治疗规划等应用中至关重要。虽然深度学习有效地实现了这项任务的自动化,但由于缺乏标注的分割掩码,在超低数据量的情况下仍面临困难。为了解决这个问题,我们提出了一个生成式深度学习框架,该框架生成高质量的图像-掩码对作为辅助训练数据。与传统的将数据生成与模型训练分开的生成模型不同,我们的框架使用多级优化进行端到端的数据生成。这使得分割性能能够指导生成过程,生成专门用于改善分割结果的数据。我们的方法在11个医学图像分割任务和19个数据集上展示了强大的泛化能力,涵盖了各种疾病、器官和模态。在同域和域外设置中,它的性能提高了10%-20%(绝对值),并且所需的训练数据比现有方法少8-20倍。这大大提高了深度学习在数据有限的医学成像场景中的可行性和成本效益。