Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy.
Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
BMC Genomics. 2021 Apr 17;22(1):280. doi: 10.1186/s12864-021-07538-w.
Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities.
Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met.
Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
在妊娠后期补充蛋氨酸(Met)可促进胎儿在子宫内的发育,并导致新生儿期生长速度加快。由于其在协调新生营养和一碳代谢以及免疫反应方面的核心作用,肝脏可能是膳食甲基供体(如 Met)诱导的编程效应的关键靶标。为了验证这一假设,本研究从产前 28 天开始用控制或控制加乙基纤维素包被的 Met 喂养的荷斯坦奶牛所生的 4 天大的小牛(每组 6 只)的肝脏活检组织中,用于 DNA 甲基化、转录组、代谢组、蛋白质组和一碳代谢酶活性。
尽管 Met 小牛出生时的肩高和臀高较高,表明其在子宫内发育较好,但血浆系统生理指标无差异。RNA-seq 以及生物信息学和转录因子调控分析显示,由于母体 Met 供应增加,“葡萄糖代谢”、“脂质代谢”、“谷胱甘肽”和“免疫系统”代谢发生广泛改变。通过蛋白质组学评估的胰岛素敏感性更高,以及转硫途径活性的效率更高,表明对营养代谢和代谢相关应激有益。母体 Met 供应有助于小牛肝脏中磷脂酰胆碱的合成增加,作为一种平衡饮食或脂肪组织脂肪分解产生的脂肪酸代谢命运的机制,在极低密度脂蛋白分泌中起作用。尽管对肝脏氨基酸(AA)转运没有影响,但肝脏内必需 AA 代谢减少表明母体 Met 诱导的 AA“节约效应”。
尽管存在更大的全局 DNA 甲基化,但母体 Met 供应导致出生后肝脏转录组、蛋白质组和代谢组谱发生明显改变。数据强调了维持小牛肝脏 Met 稳态、谷胱甘肽、磷脂酰胆碱和牛磺酸合成以及提高营养代谢和免疫反应效率的作用。FOXO1、PPARG、E2F1 和 CREB1 等转录因子似乎在协调母体 Met 诱导的作用方面起核心作用。总的来说,母体 Met 供应改善了新生小牛肝脏的免疫代谢状态,使小牛在代谢应激和免疫功能不全的时期具有生理优势。