South Carolina SmartState Center for Healthcare Quality.
Department of Health Promotion, Education and Behavior.
AIDS. 2021 May 1;35(Suppl 1):S39-S51. doi: 10.1097/QAD.0000000000002736.
An understanding of the predictors of comorbidity among people living with HIV (PLWH) is critical for effective HIV care management. In this study, we identified predictors of comorbidity burden among PLWH based on machine learning models with electronic health record (EHR) data.
The study population are individuals with a HIV diagnosis between January 2005 and December 2016 in South Carolina (SC). The change of comorbidity burden, represented by the Charlson Comorbidity Index (CCI) score, was measured by the score difference between pre- and post-HIV diagnosis, and dichotomized into a binary outcome variable. Thirty-five risk predictors from multiple domains were used to predict the increase in comorbidity burden based on the logistic least absolute shrinkage and selection operator (Lasso) regression analysis using 80% data for model development and 20% data for validation.
Of 8253 PLWH, the mean value of the CCI score difference was 0.8 ± 1.9 (range from 0 to 21) with 2328 (28.2%) patients showing an increase in CCI score after HIV diagnosis. Top predictors for an increase in CCI score using the LASSO model included older age at HIV diagnosis, positive family history of chronic conditions, tobacco use, longer duration with retention in care, having PEBA insurance, having low recent CD4+ cell count and duration of viral suppression.
The application of machine learning methods to EHR data could identify important predictors of increased comorbidity burden among PLWH with high accuracy. Results may enhance the understanding of comorbidities and provide the evidence based data for integrated HIV and comorbidity care management of PLWH.
了解艾滋病毒感染者(PLWH)合并症的预测因素对于有效的 HIV 护理管理至关重要。在这项研究中,我们根据电子健康记录(EHR)数据的机器学习模型,确定了 PLWH 合并症负担的预测因素。
研究人群是 2005 年 1 月至 2016 年 12 月期间在南卡罗来纳州(SC)诊断出 HIV 的个体。合并症负担的变化,用 Charlson 合并症指数(CCI)评分来衡量,通过 HIV 诊断前后的评分差异进行测量,并将其分为二进制结果变量。从多个领域使用 35 个风险预测因素,根据逻辑最小绝对收缩和选择算子(Lasso)回归分析,使用 80%的数据进行模型开发,20%的数据进行验证,预测合并症负担的增加。
在 8253 名 PLWH 中,CCI 评分差异的平均值为 0.8±1.9(范围为 0 至 21),其中 2328 名(28.2%)患者在 HIV 诊断后 CCI 评分增加。使用 LASSO 模型确定 CCI 评分增加的最重要预测因素包括 HIV 诊断时的年龄较大、慢性疾病阳性家族史、吸烟、在医疗保健中保留的时间较长、有 PEBA 保险、近期 CD4+细胞计数和病毒抑制持续时间较短。
机器学习方法在 EHR 数据中的应用可以准确识别 PLWH 合并症负担增加的重要预测因素。结果可能会增强对合并症的理解,并为 PLWH 的 HIV 和合并症综合护理管理提供基于证据的数据。