Suppr超能文献

利用电子健康记录数据了解 HIV 感染者的合并症负担:一种机器学习方法。

Utilizing electronic health record data to understand comorbidity burden among people living with HIV: a machine learning approach.

机构信息

South Carolina SmartState Center for Healthcare Quality.

Department of Health Promotion, Education and Behavior.

出版信息

AIDS. 2021 May 1;35(Suppl 1):S39-S51. doi: 10.1097/QAD.0000000000002736.

Abstract

OBJECTIVES

An understanding of the predictors of comorbidity among people living with HIV (PLWH) is critical for effective HIV care management. In this study, we identified predictors of comorbidity burden among PLWH based on machine learning models with electronic health record (EHR) data.

METHODS

The study population are individuals with a HIV diagnosis between January 2005 and December 2016 in South Carolina (SC). The change of comorbidity burden, represented by the Charlson Comorbidity Index (CCI) score, was measured by the score difference between pre- and post-HIV diagnosis, and dichotomized into a binary outcome variable. Thirty-five risk predictors from multiple domains were used to predict the increase in comorbidity burden based on the logistic least absolute shrinkage and selection operator (Lasso) regression analysis using 80% data for model development and 20% data for validation.

RESULTS

Of 8253 PLWH, the mean value of the CCI score difference was 0.8 ± 1.9 (range from 0 to 21) with 2328 (28.2%) patients showing an increase in CCI score after HIV diagnosis. Top predictors for an increase in CCI score using the LASSO model included older age at HIV diagnosis, positive family history of chronic conditions, tobacco use, longer duration with retention in care, having PEBA insurance, having low recent CD4+ cell count and duration of viral suppression.

CONCLUSION

The application of machine learning methods to EHR data could identify important predictors of increased comorbidity burden among PLWH with high accuracy. Results may enhance the understanding of comorbidities and provide the evidence based data for integrated HIV and comorbidity care management of PLWH.

摘要

目的

了解艾滋病毒感染者(PLWH)合并症的预测因素对于有效的 HIV 护理管理至关重要。在这项研究中,我们根据电子健康记录(EHR)数据的机器学习模型,确定了 PLWH 合并症负担的预测因素。

方法

研究人群是 2005 年 1 月至 2016 年 12 月期间在南卡罗来纳州(SC)诊断出 HIV 的个体。合并症负担的变化,用 Charlson 合并症指数(CCI)评分来衡量,通过 HIV 诊断前后的评分差异进行测量,并将其分为二进制结果变量。从多个领域使用 35 个风险预测因素,根据逻辑最小绝对收缩和选择算子(Lasso)回归分析,使用 80%的数据进行模型开发,20%的数据进行验证,预测合并症负担的增加。

结果

在 8253 名 PLWH 中,CCI 评分差异的平均值为 0.8±1.9(范围为 0 至 21),其中 2328 名(28.2%)患者在 HIV 诊断后 CCI 评分增加。使用 LASSO 模型确定 CCI 评分增加的最重要预测因素包括 HIV 诊断时的年龄较大、慢性疾病阳性家族史、吸烟、在医疗保健中保留的时间较长、有 PEBA 保险、近期 CD4+细胞计数和病毒抑制持续时间较短。

结论

机器学习方法在 EHR 数据中的应用可以准确识别 PLWH 合并症负担增加的重要预测因素。结果可能会增强对合并症的理解,并为 PLWH 的 HIV 和合并症综合护理管理提供基于证据的数据。

相似文献

3
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol.
BMJ Open. 2019 Jul 19;9(7):e027688. doi: 10.1136/bmjopen-2018-027688.
7
Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.
Lancet HIV. 2019 Oct;6(10):e688-e695. doi: 10.1016/S2352-3018(19)30137-7. Epub 2019 Jul 5.
9
Comorbidity Burden and Health Care Utilization by Substance use Disorder Patterns among People with HIV in Florida.
AIDS Behav. 2024 Jul;28(7):2286-2295. doi: 10.1007/s10461-024-04325-y. Epub 2024 Mar 29.
10
Comorbidity and comedication burden among people living with HIV in the United States.
Curr Med Res Opin. 2022 Aug;38(8):1443-1450. doi: 10.1080/03007995.2022.2088714. Epub 2022 Jul 21.

引用本文的文献

2
Predicting the immunological nonresponse to antiretroviral therapy in people living with HIV: a machine learning-based multicenter large-scale study.
Front Cell Infect Microbiol. 2025 Mar 11;15:1466655. doi: 10.3389/fcimb.2025.1466655. eCollection 2025.
3
Machine learning models based on fluid immunoproteins that predict non-AIDS adverse events in people with HIV.
iScience. 2024 May 8;27(6):109945. doi: 10.1016/j.isci.2024.109945. eCollection 2024 Jun 21.
4
The dynamic risk factors of cardiovascular disease among people living with HIV: a real-world data study.
BMC Public Health. 2024 Apr 25;24(1):1162. doi: 10.1186/s12889-024-18672-x.
5
Comorbidity Burden and Health Care Utilization by Substance use Disorder Patterns among People with HIV in Florida.
AIDS Behav. 2024 Jul;28(7):2286-2295. doi: 10.1007/s10461-024-04325-y. Epub 2024 Mar 29.
9
Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol.
BMC Infect Dis. 2022 Feb 4;22(1):122. doi: 10.1186/s12879-022-07047-5.
10
Power of Big Data in ending HIV.
AIDS. 2021 May 1;35(Suppl 1):S1-S5. doi: 10.1097/QAD.0000000000002888.

本文引用的文献

5
Charlson Comorbidity Index: Update and Translation.
Am Health Drug Benefits. 2019 Jun-Jul;12(4):188-197.
7
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol.
BMJ Open. 2019 Jul 19;9(7):e027688. doi: 10.1136/bmjopen-2018-027688.
8
Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.
Lancet HIV. 2019 Oct;6(10):e688-e695. doi: 10.1016/S2352-3018(19)30137-7. Epub 2019 Jul 5.
10
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.
J Clin Epidemiol. 2019 Jun;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验