Suppr超能文献

利用深度学习对犬皮肤圆形细胞瘤进行组织病理学分类:一项多中心研究

Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study.

作者信息

Salvi Massimo, Molinari Filippo, Iussich Selina, Muscatello Luisa Vera, Pazzini Luca, Benali Silvia, Banco Barbara, Abramo Francesca, De Maria Raffaella, Aresu Luca

机构信息

PoliToBIOMed Lab, Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.

Department of Veterinary Sciences, University of Turin, Turin, Italy.

出版信息

Front Vet Sci. 2021 Mar 26;8:640944. doi: 10.3389/fvets.2021.640944. eCollection 2021.

Abstract

Canine cutaneous round cell tumors (RCT) represent one of the routine diagnostic challenges for veterinary pathologists. Computer-aided approaches are developed to overcome these restrictions and to increase accuracy and consistency of diagnosis. These systems are also of high benefit reducing errors when a large number of cases are screened daily. In this study we describe ARCTA (Automated Round Cell Tumors Assessment), a fully automated algorithm for cutaneous RCT classification and mast cell tumors grading in canine histopathological images. ARCTA employs a deep learning strategy and was developed on 416 RCT images and 213 mast cell tumors images. In the test set, our algorithm exhibited an excellent classification performance in both RCT classification (accuracy: 91.66%) and mast cell tumors grading (accuracy: 100%). Misdiagnoses were encountered for histiocytomas in the train set and for melanomas in the test set. For mast cell tumors the reduction of a grade was observed in the train set, but not in the test set. To the best of our knowledge, the proposed model is the first fully automated algorithm in histological images specifically developed for veterinary medicine. Being very fast (average computational time 2.63 s), this algorithm paves the way for an automated and effective evaluation of canine tumors.

摘要

犬皮肤圆形细胞瘤(RCT)是兽医病理学家日常诊断面临的挑战之一。为克服这些限制并提高诊断的准确性和一致性,人们开发了计算机辅助方法。当每天筛查大量病例时,这些系统在减少错误方面也具有很高的效益。在本研究中,我们描述了ARCTA(自动圆形细胞瘤评估),这是一种用于犬组织病理学图像中皮肤RCT分类和肥大细胞瘤分级的全自动算法。ARCTA采用深度学习策略,基于416张RCT图像和213张肥大细胞瘤图像开发。在测试集中,我们的算法在RCT分类(准确率:91.66%)和肥大细胞瘤分级(准确率:100%)方面均表现出出色的分类性能。在训练集中对组织细胞瘤和测试集中对黑色素瘤存在误诊情况。对于肥大细胞瘤,在训练集中观察到了分级降低的情况,但在测试集中未观察到。据我们所知,所提出的模型是首个专门为兽医学开发的组织学图像全自动算法。该算法速度非常快(平均计算时间2.63秒),为犬肿瘤的自动化和有效评估铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf6/8044886/f8ecb77987af/fvets-08-640944-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验