Wang Tao, Yang Fan, Wang Ziqun, Zhang Bing, Wang Wei, Liu Feng
National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, P. R. China.
iScience. 2021 Mar 17;24(4):102301. doi: 10.1016/j.isci.2021.102301. eCollection 2021 Apr 23.
Grid cells provide a metric representation of self-location. They are organized into modules, showing discretized scales of grid spacing, but the underlying mechanism remains elusive. In this modeling study, we propose that the hexagonal lattice of pyramidal cell patches may underlie the discretization of grid spacing and orientation. In the continuous attractor network composed of interneurons, stellate and pyramidal cells, the hexagonal lattice of bump attractors is specifically aligned to the patch lattice under 22 conditions determined by the geometry of the patch lattice, while pyramidal cells exhibit synchrony to diverse extents. Given the bump attractor lattice in each module originates from those 22 scenarios, the experimental data on the grid spacing ratio and orientation difference between modules can be reproduced. This work recapitulates the patterns of grid spacing versus orientation in individual animals and reveals the correlation between microstructures and firing fields, providing a systems-level mechanism for grid modularity.
网格细胞提供自我位置的度量表征。它们被组织成模块,呈现出离散化的网格间距尺度,但潜在机制仍不清楚。在这项建模研究中,我们提出锥体细胞斑块的六边形晶格可能是网格间距和方向离散化的基础。在由中间神经元、星状细胞和锥体细胞组成的连续吸引子网络中,在由斑块晶格几何形状决定的22种条件下,凸起吸引子的六边形晶格与斑块晶格特异性对齐,而锥体细胞表现出不同程度的同步。鉴于每个模块中的凸起吸引子晶格源自这22种情况,模块之间网格间距比率和方向差异的实验数据可以被重现。这项工作概括了个体动物中网格间距与方向的模式,并揭示了微观结构与放电场之间的相关性,为网格模块化提供了一种系统层面的机制。