Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
Physiol Genomics. 2021 May 1;53(5):206-221. doi: 10.1152/physiolgenomics.00154.2020. Epub 2021 Apr 19.
The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as ) predictive of hypertrophy, ) responsive to RT independent of muscle hypertrophy, or ) plastic with hypertrophy. Older adults ( = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- ( = 31) and post-RT ( = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks ( = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks ( = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.
抗阻运动训练(RT)引起的骨骼肌肥大反应在个体之间具有高度可变性。这种异质性的分子基础尚不清楚。本研究调查了与 RT 诱导的肌肉肥大相关的转录网络,这些网络分为)预测肥大的,)对 RT 不依赖于肌肉肥大有反应的,或)与肥大具有可塑性的。老年人(= 31,18 女/13 男,70 ± 4 岁)接受了 14 周的 RT(每周 3 天,交替进行高强度和低强度)。通过大腿中段肌肉横截面积(CSA)[计算机断层扫描(CT),主要结果]和大腿瘦体重[双能 X 射线吸收法(DXA),次要结果]在 RT 前后的变化来评估肌肉肥大。在股外侧肌组织上进行了全转录组 poly-A RNA-seq 分析,这些组织是在 RT 前(= 31)和 RT 后(= 22)收集的。通过加权基因相关网络分析(WGCNA)识别预测网络(仅使用基线 RNA-seq)。为了识别可塑性网络,计算了配对样本的 WGCNA 变化指数,并将其与肌肉大小变化结果相关联。应用途径水平信息提取器(PLIER)来识别反应网络,并将基因与生物学注释联系起来。预测网络(= 6)证实了先前与 MetaMEx 数据库中的抗阻/有氧训练适应相关的转录本,同时揭示了新的成员基因,这些基因应该为未来的研究提供动力,以了解基线肌肉基因表达对肥大的影响。反应网络(= 6)表明 RT 诱导了有氧代谢的增加,以及与剪接体生物学和 I 型肌纤维相关的基因表达的减少。确定了一个探索性的可塑性网络。研究结果支持个体间基线基因表达的差异可能比 RT 诱导的基因网络变化对肌肉肥大反应异质性的贡献更大。代码/数据:https://github.com/kallavin/MASTERS_manuscript/tree/master。