Suppr超能文献

基于机器学习的电子虚弱指数在预测心力衰竭短期死亡率中的应用。

Derivation of an electronic frailty index for predicting short-term mortality in heart failure: a machine learning approach.

机构信息

Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.

School of Data Science, City University of Hong Kong, Hong Kong SAR, China.

出版信息

ESC Heart Fail. 2021 Aug;8(4):2837-2845. doi: 10.1002/ehf2.13358. Epub 2021 Jun 3.

Abstract

AIMS

Frailty may be found in heart failure patients especially in the elderly and is associated with a poor prognosis. However, assessment of frailty status is time-consuming, and the electronic frailty indices developed using health records have served as useful surrogates. We hypothesized that an electronic frailty index developed using machine learning can improve short-term mortality prediction in patients with heart failure.

METHODS AND RESULTS

This was a retrospective observational study that included patients admitted to nine public hospitals for heart failure from Hong Kong between 2013 and 2017. Age, sex, variables in the modified frailty index, Deyo's Charlson co-morbidity index (≥2), neutrophil-to-lymphocyte ratio (NLR), and prognostic nutritional index at baseline were analysed. Gradient boosting, which is a supervised sequential ensemble learning algorithm with weak prediction submodels (typically decision trees), was applied to predict mortality. Variables were ranked in the order of importance with a total score of 100 and used to build the frailty models. Comparisons were made with decision tree and multivariable logistic regression. A total of 8893 patients (median: age 81, Q1-Q3: 71-87 years old) were included, in whom 9% had 30 day mortality and 17% had 90 day mortality. Prognostic nutritional index, age, and NLR were the most important variables predicting 30 day mortality (importance score: 37.4, 32.1, and 20.5, respectively) and 90 day mortality (importance score: 35.3, 36.3, and 14.6, respectively). Gradient boosting significantly outperformed decision tree and multivariable logistic regression. The area under the curve from a five-fold cross validation was 0.90 for gradient boosting and 0.87 and 0.86 for decision tree and logistic regression in predicting 30 day mortality. For the prediction of 90 day mortality, the area under the curve was 0.92, 0.89, and 0.86 for gradient boosting, decision tree, and logistic regression, respectively.

CONCLUSIONS

The electronic frailty index based on co-morbidities, inflammation, and nutrition information can readily predict mortality outcomes. Their predictive performances were significantly improved by gradient boosting techniques.

摘要

目的

衰弱可能存在于心力衰竭患者中,尤其是老年人中,且与预后不良相关。然而,衰弱状态的评估较为耗时,且使用健康记录开发的电子衰弱指数已成为有用的替代指标。我们假设,使用机器学习开发的电子衰弱指数可改善心力衰竭患者的短期死亡率预测。

方法和结果

这是一项回顾性观察性研究,纳入了 2013 年至 2017 年期间从香港 9 家公立医院因心力衰竭入院的患者。分析了年龄、性别、改良衰弱指数中的变量、Deyo 的 Charlson 合并症指数(≥2)、中性粒细胞与淋巴细胞比值(NLR)以及基线时的预后营养指数。梯度提升(一种具有弱预测子模型(通常为决策树)的有监督序贯集成学习算法)用于预测死亡率。变量按重要性排序,总分为 100 分,用于构建衰弱模型。与决策树和多变量逻辑回归进行了比较。共纳入 8893 例患者(中位数年龄 81 岁,Q1-Q3:71-87 岁),其中 9%在 30 天内死亡,17%在 90 天内死亡。预后营养指数、年龄和 NLR 是预测 30 天死亡率(重要性评分:37.4、32.1 和 20.5)和 90 天死亡率(重要性评分:35.3、36.3 和 14.6)最重要的变量。梯度提升显著优于决策树和多变量逻辑回归。在五折交叉验证中,梯度提升在预测 30 天死亡率方面的曲线下面积为 0.90,决策树和逻辑回归分别为 0.87 和 0.86。对于 90 天死亡率的预测,曲线下面积分别为 0.92、0.89 和 0.86,梯度提升、决策树和逻辑回归。

结论

基于合并症、炎症和营养信息的电子衰弱指数可以很好地预测死亡率结果。通过梯度提升技术,其预测性能得到了显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7f2/8318426/9812500f438d/EHF2-8-2837-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验