Graduate School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.
PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab119.
Genotype-by-environment (G × E) interactions are important for understanding genotype-phenotype relationships. To date, various statistical models have been proposed to account for G × E effects, especially in genomic selection (GS) studies. Generally, GS does not focus on the detection of each quantitative trait locus (QTL), while the genome-wide association study (GWAS) was designed for QTL detection. G × E modeling methods in GS can be included as covariates in GWAS using unified linear mixed models (LMMs). However, the efficacy of G × E modeling methods in GS studies has not been evaluated for GWAS. In this study, we performed a comprehensive comparison of LMMs that integrate the G × E modeling methods to detect both QTL and QTL-by-environment (Q × E) interaction effects. Model efficacy was evaluated using simulation experiments. For the fixed effect terms representing Q × E effects, simultaneous scoring of specific and nonspecific environmental effects was recommended because of the higher recall and improved genomic inflation factor value. For random effects, it was necessary to account for both G × E and genotype-by-trial (G × T) effects to control genomic inflation factor value. Thus, the recommended LMM includes fixed QTL effect terms that simultaneously score specific and nonspecific environmental effects and random effects accounting for both G × E and G × T. The LMM was applied to real tomato phenotype data obtained from two different cropping seasons. We detected not only QTLs with persistent effects across the cropping seasons but also QTLs with Q × E effects. The optimal LMM identified in this study successfully detected more QTLs with Q × E effects.
基因型与环境(G×E)互作对于理解基因型与表型关系至关重要。迄今为止,已经提出了各种统计模型来解释 G×E 效应,特别是在基因组选择(GS)研究中。一般来说,GS 并不关注每个数量性状位点(QTL)的检测,而全基因组关联研究(GWAS)则是专门为 QTL 检测设计的。GS 中的 G×E 建模方法可以通过统一的线性混合模型(LMM)作为协变量纳入 GWAS。然而,GS 研究中 G×E 建模方法在 GWAS 中的效果尚未得到评估。在这项研究中,我们对整合 G×E 建模方法的 LMM 进行了全面比较,以检测 QTL 和 QTL 与环境(Q×E)互作效应。使用模拟实验评估模型效果。对于代表 Q×E 效应的固定效应项,建议同时对特定和非特定环境效应进行评分,因为这可以提高召回率并改善基因组膨胀因子值。对于随机效应,有必要同时考虑 G×E 和基因型与试验(G×T)效应,以控制基因组膨胀因子值。因此,建议的 LMM 包括固定的 QTL 效应项,这些效应项同时对特定和非特定环境效应进行评分,并考虑了同时包含 G×E 和 G×T 的随机效应。该 LMM 应用于从两个不同种植季节获得的真实番茄表型数据。我们不仅检测到了在两个种植季节都具有持久效应的 QTL,还检测到了具有 Q×E 效应的 QTL。本研究中确定的最优 LMM 成功地检测到了更多具有 Q×E 效应的 QTL。