Suppr超能文献

矩阵素描框架在关联研究中的线性混合模型。

Matrix sketching framework for linear mixed models in association studies.

机构信息

Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA.

Computer Science Department, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Genome Res. 2024 Oct 11;34(9):1304-1311. doi: 10.1101/gr.279230.124.

Abstract

Linear mixed models (LMMs) have been widely used in genome-wide association studies to control for population stratification and cryptic relatedness. However, estimating LMM parameters is computationally expensive, necessitating large-scale matrix operations to build the genetic relationship matrix (GRM). Over the past 25 years, Randomized Linear Algebra has provided alternative approaches to such matrix operations by leveraging , which often results in provably accurate fast and efficient approximations. We leverage matrix sketching to develop a fast and efficient LMM method called trix-etching LMM (MaSk-LMM) by sketching the genotype matrix to reduce its dimensions and speed up computations. Our framework comes with both theoretical guarantees and a strong empirical performance compared to the current state-of-the-art for simulated traits and complex diseases.

摘要

线性混合模型 (LMM) 在全基因组关联研究中被广泛用于控制群体分层和隐匿相关。然而,估计 LMM 参数计算成本很高,需要大规模的矩阵操作来构建遗传关系矩阵 (GRM)。在过去的 25 年中,随机线性代数通过利用随机抽样来提供替代矩阵操作的方法,这通常可以得到可证明的准确、快速和高效的近似。我们利用矩阵草图来开发一种快速高效的 LMM 方法,称为 trix-etching LMM (MaSk-LMM),通过对基因型矩阵进行草图来降低其维度并加速计算。与模拟特征和复杂疾病的当前最先进方法相比,我们的框架具有理论保证和强大的经验性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2124/11529869/7b27241f4291/1304f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验