Suppr超能文献

将金属蛋白酶作为天然金属酶的模拟物进行再利用,以激活小分子。

Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.

机构信息

Department of Chemistry, Yale University, New Haven, CT, 06520, United States.

Department of Chemistry, Yale University, New Haven, CT, 06520, United States.

出版信息

J Inorg Biochem. 2021 Jun;219:111430. doi: 10.1016/j.jinorgbio.2021.111430. Epub 2021 Mar 18.

Abstract

Artificial metalloenzymes (ArMs) consist of an unnatural metal or cofactor embedded in a protein scaffold, and are an excellent platform for applying the concepts of protein engineering to catalysis. In this Focused Review, we describe the application of ArMs as simple, tunable artificial models of the active sites of complex natural metalloenzymes for small-molecule activation. In this sense, ArMs expand the strategies of synthetic model chemistry to protein-based supporting ligands with potential for participation from the second coordination sphere. We focus specifically on ArMs that are structural, spectroscopic, and functional models of enzymes for activation of small molecules like CO, CO, O, N, and NO, as well as production/consumption of H. These ArMs give insight into the identities and roles of metalloenzyme structural features within and near the cofactor. We give examples of ArM work relevant to hydrogenases, acetyl-coenzyme A synthase, superoxide dismutase, heme oxygenases, nitric oxide reductase, methyl-coenzyme M reductase, copper-O enzymes, and nitrogenases.

摘要

人工金属酶(ArMs)由嵌入蛋白质支架中的非天然金属或辅因子组成,是将蛋白质工程概念应用于催化的绝佳平台。在本次重点综述中,我们描述了将 ArMs 用作复杂天然金属酶活性位点的简单、可调的人工模型,以实现小分子的活化。从这个意义上说,ArMs 将合成模型化学的策略扩展到了基于蛋白质的支撑配体,这些配体有可能来自第二配位层。我们特别关注那些能够模拟酶结构、光谱和功能的 ArMs,以活化小分子,如 CO、CO、O、N 和 NO,并参与 H 的生成/消耗。这些 ArMs 使我们深入了解了金属酶结构特征在辅因子内外的身份和作用。我们给出了与氢化酶、乙酰辅酶 A 合酶、超氧化物歧化酶、血红素加氧酶、一氧化氮还原酶、甲基辅酶 M 还原酶、铜-O 酶和氮酶相关的 ArM 工作的例子。

相似文献

1
Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
J Inorg Biochem. 2021 Jun;219:111430. doi: 10.1016/j.jinorgbio.2021.111430. Epub 2021 Mar 18.
2
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
3
Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
Molecules. 2020 Jun 30;25(13):2989. doi: 10.3390/molecules25132989.
4
Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
Acc Chem Res. 2019 Apr 16;52(4):945-954. doi: 10.1021/acs.accounts.8b00676. Epub 2019 Apr 1.
5
Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
Molecules. 2019 Jul 29;24(15):2743. doi: 10.3390/molecules24152743.
6
Protein-based models offer mechanistic insight into complex nickel metalloenzymes.
Curr Opin Chem Biol. 2022 Apr;67:102110. doi: 10.1016/j.cbpa.2021.102110. Epub 2022 Jan 31.
7
LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
Acc Chem Res. 2019 Mar 19;52(3):545-556. doi: 10.1021/acs.accounts.9b00004. Epub 2019 Feb 22.
9
Design of Heteronuclear Metalloenzymes.
Methods Enzymol. 2016;580:501-37. doi: 10.1016/bs.mie.2016.05.050. Epub 2016 Jul 26.

引用本文的文献

本文引用的文献

2
Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes.
Chem Commun (Camb). 2020 Aug 28;56(67):9586-9599. doi: 10.1039/d0cc03137b. Epub 2020 Jul 21.
3
Light-driven catalysis with engineered enzymes and biomimetic systems.
Biotechnol Appl Biochem. 2020 Jul;67(4):463-483. doi: 10.1002/bab.1976. Epub 2020 Jul 5.
4
How the Local Environment of Functional Sites Regulates Protein Function.
J Am Chem Soc. 2020 Jun 3;142(22):9861-9871. doi: 10.1021/jacs.0c02430. Epub 2020 May 19.
5
Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases.
Inorg Chem. 2020 May 4;59(9):6000-6009. doi: 10.1021/acs.inorgchem.9b03791. Epub 2020 Apr 20.
6
Enhanced Photocatalytic Hydrogen Production by Hybrid Streptavidin-Diiron Catalysts.
Chemistry. 2020 May 15;26(28):6240-6246. doi: 10.1002/chem.202000204. Epub 2020 Apr 28.
7
Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5107-5157. doi: 10.1021/acs.chemrev.9b00704. Epub 2020 Mar 4.
8
Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds.
Angew Chem Int Ed Engl. 2020 May 11;59(20):7678-7699. doi: 10.1002/anie.201907502. Epub 2020 Mar 2.
9
Artificial Metalloenzymes: Challenges and Opportunities.
ACS Cent Sci. 2019 Jul 24;5(7):1120-1136. doi: 10.1021/acscentsci.9b00397. Epub 2019 Jul 16.
10
Myoglobin Reconstituted with Ni Tetradehydrocorrin as a Methane-Generating Model of Methyl-coenzyme M Reductase.
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13813-13817. doi: 10.1002/anie.201907584. Epub 2019 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验