Joshi Chandrashekhar P, Bhandari Suchita, Ranjan Priya, Kalluri Udaya C, Liang Xiaoe, Fujino Takeshi, Samuga Anita
Plant Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.
New Phytol. 2004 Oct;164(1):53-61. doi: 10.1111/j.1469-8137.2004.01155.x.
Genetic improvement of cellulose production in commercially important trees is one of the formidable goals of current forest biotechnology research. To achieve this goal, we must first decipher the enigmatic and complex process of cellulose biosynthesis in trees. The recent availability of rich genomic resources in poplars make Populus the first tree genus for which genetic augmentation of cellulose may soon become possible. Fortunately, because of the structural conservation of key cellulose biosynthesis genes between Arabidopsis and poplar genomes, the lessons learned from exploring the functions of Arabidopsis genes may be applied directly to poplars. However, regulation of these genes will most likely be distinct in these two-model systems because of their inherent biological differences. This research review covers the current state of knowledge about the three major cellulose biosynthesis-related gene families from poplar genomes: cellulose synthases, sucrose synthases and korrigan cellulases. Furthermore, we also suggest some future research directions that may have significant economical impacts on global forest product industries.
在具有商业重要性的树木中提高纤维素产量的遗传改良是当前森林生物技术研究的艰巨目标之一。为实现这一目标,我们必须首先破解树木中神秘而复杂的纤维素生物合成过程。杨树中丰富的基因组资源的近期可得性使杨树成为首个可能很快实现纤维素遗传增强的树木属。幸运的是,由于拟南芥和杨树基因组之间关键纤维素生物合成基因的结构保守性,从探索拟南芥基因功能中学到的经验教训可直接应用于杨树。然而,由于这两个模式系统固有的生物学差异,这些基因的调控很可能截然不同。本研究综述涵盖了杨树基因组中与纤维素生物合成相关的三个主要基因家族的当前知识状态:纤维素合酶、蔗糖合酶和科里根纤维素酶。此外,我们还提出了一些未来的研究方向,这些方向可能会对全球林产品行业产生重大经济影响。