Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
J Nanosci Nanotechnol. 2021 Oct 1;21(10):5083-5098. doi: 10.1166/jnn.2021.19328.
With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl₂ was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl₂ treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl₂) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl₂ treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.
随着纳米技术的进步,纳米颗粒被广泛应用于许多不同的工业过程和消费产品中。铜纳米颗粒(Cu NPs)是最具毒性的纳米材料之一。我们通过研究信号通路和 microRNA/mRNA 相互作用来研究 Cu NPs 在人肝癌细胞(HepG2)中的毒性。我们比较了不同浓度的 Cu NPs 和 CuCl₂暴露的效果,CuCl₂被用作对照。无论是 Cu NPs 还是 CuCl₂处理,差异表达的 mRNA 数量都没有遵循线性剂量反应关系。Cu NPs 暴露最显著改变的基因和途径是 NRF2(核因子红细胞 2 相关因子 2)介导的氧化应激反应、蛋白质泛素化、肿瘤蛋白 p53(p53)、I 期和 II 期代谢酶、抗氧化蛋白和 III 期解毒基因途径。从 MicroRNA Target Filter Analyses 的信使 RNA-microRNA 相互作用分析中发现,Cu NPs 处理样品中改变的信号通路比转录组学单独分析更多,包括细胞增殖、DNA 甲基化、内质网(ER)应激、细胞凋亡、自噬、活性氧、炎症、肿瘤发生、细胞外基质/血管生成和蛋白质合成。相比之下,在对照(CuCl₂)处理的样品中,主要通过调节核因子 Kappa-轻链增强子的激活 B 细胞(NFB)来改变炎症。此外,一些基于 RNA 的参数显示出作为 Cu NPs 暴露生物标志物的潜力,包括已知和不太知名的基因:血红素加氧酶 1(HMOX1)、热休克蛋白、c-Fos 原癌基因、DNA 甲基转移酶和谷氨酸半胱氨酸连接酶修饰亚基(GCLM,谷胱甘肽合成途径的一部分)。Cu NPs 和 CuCl₂处理改变的信号通路的差异表明,Cu NPs 的作用不是纳米材料溶解为可溶性铜离子的结果。