Suppr超能文献

冠状病毒口罩的热解动力学行为及热重-傅里叶变换红外光谱-气相色谱-质谱联用分析

Pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of Coronavirus Face Masks.

作者信息

Yousef Samy, Eimontas Justas, Striūgas Nerijus, Abdelnaby Mohammed Ali

机构信息

Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424, Kaunas, Lithuania.

Department of Materials Science, South Ural State University, Lenin Prospect 76, 454080, Chelyabinsk, Russia.

出版信息

J Anal Appl Pyrolysis. 2021 Jun;156:105118. doi: 10.1016/j.jaap.2021.105118. Epub 2021 Apr 14.

Abstract

In the times of Covid-19, face masks are considered to be the main source of protection against the virus that reduces its spread. These masks are classified as single-use medical products with a very short service life, estimated at few days, hence millions of contaminated masks are generated daily in the form of hazardous materials, what requires to develop a safe method to dispose of them, especially since some of them are loaded with viruses. 3-ply face masks (3PFM) represent the major fraction of this waste and are composed mainly from polypropylene and melt blown filter with high content of volatile substances (96.6 wt.%), what makes pyrolysis treatment an emerging technology that could be used to dispose of face masks and convert them into energy products. In this context, this work aims to study pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of 3PFM. The research started with analysis of 3PFM using elemental analysis, proximate analysis, and compositional analyses. Afterwards, TG-FTIR system was used to study the thermal and chemical decomposition of 3PFM analyzed at different heating rates: 5, 10, 15, 20, 25, and 30 °C/min. The GC/MS system was used to observe the synthesized volatile products at the maximum decomposition temperatures. After that, isoconversional methods, the advanced nonlinear integral isoconversional method, and the iterative linear integral isoconversional method were used to determine the activation energies of mask pyrolysis, while the distributed activation energy model and the independent parallel reactions kinetic model were used to fit TGA and DTG curves with deviations below <1. The TGA-DTG results showed that 3PFM can decompose in three different periods with a total weight loss of 95 % and maximum decomposition in the range 405-510 °C, while the FTIR spectra and GC-MS analysis exhibited that - C-H (aromatic and aliphatic) and 2,4-Dimethyl-1-heptene (28-43 % based on heating rate) represented the major compounds in the released volatile components. Finally, Vyazovkin and the iterative linear integral isoconversional methods gave activation energies almost similar to that obtained by the KAS isoconversional method.

摘要

在新冠疫情期间,口罩被视为预防病毒传播的主要防护用品。这些口罩被归类为一次性医疗用品,使用寿命极短,估计只有几天,因此每天会产生数百万个被污染的口罩,它们以危险材料的形式存在,这就需要开发一种安全的处理方法,尤其是因为其中一些口罩携带病毒。三层口罩(3PFM)占这种废弃物的主要部分,主要由聚丙烯和含有高挥发性物质(96.6重量%)的熔喷滤材组成,这使得热解处理成为一种可用于处理口罩并将其转化为能源产品的新兴技术。在此背景下,本工作旨在研究3PFM的热解动力学行为以及热重-傅里叶变换红外光谱-气相色谱-质谱联用(TG-FTIR-GC-MS)分析。研究首先使用元素分析、工业分析和成分分析对3PFM进行分析。之后,使用TG-FTIR系统研究在不同升温速率(5、10、15、20、25和30℃/min)下3PFM的热分解和化学分解。使用气相色谱/质谱联用(GC/MS)系统观察在最大分解温度下合成的挥发性产物。之后,采用等转化率方法、先进的非线性积分等转化率方法和迭代线性积分等转化率方法来确定口罩热解的活化能,同时使用分布活化能模型和独立平行反应动力学模型对热重(TGA)和微商热重(DTG)曲线进行拟合,偏差低于<1。热重-微商热重结果表明,3PFM可在三个不同阶段分解,总失重为95%,最大分解温度范围为405-510℃,而傅里叶变换红外光谱和气相色谱-质谱联用分析表明,-C-H(芳香族和脂肪族)以及2,4-二甲基-1-庚烯(基于升温速率为28-43%)是释放的挥发性成分中的主要化合物。最后,维亚佐夫金方法和迭代线性积分等转化率方法得到的活化能与KAS等转化率方法得到的活化能几乎相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ca/8045431/6255681b2975/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验