Serva Alessandra, Salanne Mathieu, Havenith Martina, Pezzotti Simone
Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France.
Institut Universitaire de France, 75231 Paris Cedex 05, France.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2023867118.
Hydrophobic hydration at metal/water interfaces actively contributes to the energetics of electrochemical reactions, e.g. [Formula: see text] and [Formula: see text] reduction, where small hydrophobic molecules are involved. In this work, constant applied potential molecular dynamics is employed to study hydrophobic hydration at a gold/water interface. We propose an adaptation of the Lum-Chandler-Weeks (LCW) theory to describe the free energy of hydrophobic hydration at the interface as a function of solute size and applied voltage. Based on this model we are able to predict the free energy cost of cavity formation at the interface directly from the free energy cost in the bulk plus an interface-dependent correction term. The interfacial water network contributes significantly to the free energy, yielding a preference for outer-sphere adsorption at the gold surface for ideal hydrophobes. We predict an accumulation of small hydrophobic solutes of sizes comparable to CO or [Formula: see text], while the free energy cost to hydrate larger hydrophobes, above 2.5-Å radius, is shown to be greater at the interface than in the bulk. Interestingly, the transition from the volume dominated to the surface dominated regimes predicted by the LCW theory in the bulk is also found to take place for hydrophobes at the Au/water interface but occurs at smaller cavity radii. By applying the adapted LCW theory to a simple model addition reaction, we illustrate some implications of our findings for electrochemical reactions.
金属/水界面处的疏水水合作用对电化学反应的能量学有积极贡献,例如涉及小分子疏水化合物的[化学式:见正文]和[化学式:见正文]还原反应。在这项工作中,我们采用恒外场分子动力学方法来研究金/水界面处的疏水水合作用。我们提出了一种对Lum-Chandler-Weeks(LCW)理论的修正,以描述界面处疏水水合作用的自由能与溶质大小和外加电压的函数关系。基于该模型,我们能够直接从本体中的自由能成本加上一个与界面相关的校正项来预测界面处空穴形成的自由能成本。界面水网络对自由能有显著贡献,使得理想疏水物在金表面优先发生外层吸附。我们预测尺寸与CO或[化学式:见正文]相当的小疏水溶质会发生聚集,而半径大于2.5 Å的较大疏水物在界面处水合的自由能成本高于本体。有趣的是,在本体中由LCW理论预测的从体积主导到表面主导的转变在金/水界面处的疏水物中也会发生,但发生在更小的空穴半径处。通过将修正后的LCW理论应用于一个简单的模型加成反应,我们阐述了这些发现对电化学反应的一些影响。