Suppr超能文献

时空数据挖掘:关于挑战与开放问题的综述

Spatiotemporal data mining: a survey on challenges and open problems.

作者信息

Hamdi Ali, Shaban Khaled, Erradi Abdelkarim, Mohamed Amr, Rumi Shakila Khan, Salim Flora D

机构信息

School of Computing Technologies, RMIT University, Melbourne, Australia.

Department of Computer Science and Engineering, Qatar University, Doha, Qatar.

出版信息

Artif Intell Rev. 2022;55(2):1441-1488. doi: 10.1007/s10462-021-09994-y. Epub 2021 Apr 15.

Abstract

Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.

摘要

时空数据挖掘(STDM)从空间和时间的动态相互作用中发现有用的模式。一些现有的综述涵盖了STDM的进展,并报道了该领域的大量重要成果。然而,STDM的挑战和问题在相关文章中并未得到充分讨论和阐述。我们试图通过对STDM的最新进展进行全面的文献综述来填补这一空白。我们描述了具有挑战性的问题及其成因,以及多个STDM方向和方面存在的空白。具体而言,我们研究了时空关系、跨学科性、离散化和数据特征方面的挑战性问题。此外,我们讨论了文献中的局限性以及与时空数据表示、建模和可视化以及方法的全面性相关的开放研究问题。我们解释了与STDM分类、聚类、热点检测、关联和模式挖掘、异常检测、可视化、视觉分析以及计算机视觉任务相关的问题。我们还强调了与包括犯罪与公共安全、交通与运输、地球与环境监测、流行病学、社交媒体和物联网在内的多个应用相关的STDM问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1723/8049397/bb2653179fc6/10462_2021_9994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验