Suppr超能文献

使用人类数据分析进行远程神经科学实验室教学的非一次性任务

Non-Disposable Assignments for Remote Neuroscience Laboratory Teaching Using Analysis of Human Data.

作者信息

Seraphin Sally B, Stock Shannon

机构信息

Neuroscience Program, Trinity College, 300 Summit Street, Hartford, CT 06106.

Mathematics and Computer Science, College of the Holy Cross, 1 College Street, Worcester, MA 01610.

出版信息

J Undergrad Neurosci Educ. 2020 Dec 31;19(1):A105-A112. eCollection 2020 Fall.

Abstract

To accomplish discovery learning in a remote educational context, while also addressing disparities in laboratory facility/equipment access, instructors can assign Non-Disposable Assignments (NDA) whereby students design research projects, extract data from public sources, analyze data in a cloud-based environment, and share potentially original findings. Unlike typical course assignments (e.g., lab-reports, tests) that remain in the student-teacher dyad, NDAs (e.g., disseminated presentations, visualizations, manuscripts) are associated with enhanced learning and facilitate the integration of diverse student perspectives in the creation, analysis and dissemination of neuroscience. Illustrating the design of a project-based approach to teaching neuroscience laboratory courses, we provide two example NDAs using neural imaging and physiological information available from public databases. We provide a data set in a directly usable form for teaching with R, and present an overview of two user-friendly tools, RStudio and R-Markdown, for remote teaching and learning through data analysis.

摘要

为了在远程教育环境中实现发现式学习,同时解决实验室设施/设备获取方面的差异问题,教师可以布置非一次性作业(NDA),让学生设计研究项目、从公共来源提取数据、在基于云的环境中分析数据,并分享潜在的原创发现。与保留在师生二元关系中的典型课程作业(如实验报告、测试)不同,非一次性作业(如传播演示文稿、可视化、手稿)与增强学习相关联,并有助于在神经科学的创建、分析和传播中整合不同的学生观点。为了说明基于项目的神经科学实验室课程教学方法的设计,我们使用从公共数据库中获取的神经成像和生理信息提供了两个非一次性作业示例。我们以直接可用的形式提供一个数据集用于R教学,并概述了两个用户友好的工具RStudio和R-Markdown,用于通过数据分析进行远程教学和学习。

相似文献

1
Non-Disposable Assignments for Remote Neuroscience Laboratory Teaching Using Analysis of Human Data.
J Undergrad Neurosci Educ. 2020 Dec 31;19(1):A105-A112. eCollection 2020 Fall.
2
R Markdown as a dynamic interface for teaching: Modules from math and biology classrooms.
Math Biosci. 2022 Jul;349:108844. doi: 10.1016/j.mbs.2022.108844. Epub 2022 May 24.
4
Technology in the teaching of neuroscience: enhanced student learning.
Adv Physiol Educ. 2003 Dec;27(1-4):146-55. doi: 10.1152/advan.00059.2002.
5
Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):14-26. doi: 10.11124/jbisrir-2015-1694.
6
Application of DenTeach in Remote Dentistry Teaching and Learning During the COVID-19 Pandemic: A Case Study.
Front Robot AI. 2021 Jan 22;7:611424. doi: 10.3389/frobt.2020.611424. eCollection 2020.
8
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
9
Low-cost MRI System for Teaching.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340036.
10
Redesigning a Neuroscience Laboratory Course for Multiple Sections: An Action Research Project to Engage Students.
J Undergrad Neurosci Educ. 2017 Jun 15;15(2):A137-A143. eCollection 2017 Spring.

引用本文的文献

1
Virtual/Remote Labs for Fluorescent Immunocytochemistry or Western Blotting: The Next Best Thing to Being There.
J Undergrad Neurosci Educ. 2022 Jun 1;20(2):A219-A225. doi: 10.59390/XCGJ3727. eCollection 2022 Winter.
2
An Introduction to the Proceedings of the 2020 FUN Summer Virtual Meeting.
J Undergrad Neurosci Educ. 2022 Jun 1;20(2):E21-E24. doi: 10.59390/LKPG6213. eCollection 2022 Winter.
3
A Course-Based Research Experience Using the Allen Brain Map: From Research Question to Poster Session.
J Undergrad Neurosci Educ. 2021 Jun 20;19(2):A260-A266. eCollection 2021 Spring.
4
Virtual was the Reality in Neuroscience Education during the COVID-19 Pandemic.
J Undergrad Neurosci Educ. 2020 Dec 31;19(1):E1-E2. eCollection 2020 Fall.

本文引用的文献

1
Reproducibility and the future of MRI research.
Magn Reson Med. 2019 Dec;82(6):1981-1983. doi: 10.1002/mrm.27939. Epub 2019 Aug 10.
2
Each to Their Own CURE: Faculty Who Teach Course-Based Undergraduate Research Experiences Report Why You Too Should Teach a CURE.
J Microbiol Biol Educ. 2017 May 26;18(2). doi: 10.1128/jmbe.v18i2.1260. eCollection 2017 Apr.
3
Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences.
J Microbiol Biol Educ. 2017 May 26;18(2). doi: 10.1128/jmbe.v18i2.1287. eCollection 2017 Apr.
4
Proposed Training to Meet Challenges of Large-Scale Data in Neuroscience.
Front Neuroinform. 2016 Jul 18;10:28. doi: 10.3389/fninf.2016.00028. eCollection 2016.
6
Pain in the ACC?
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2474-5. doi: 10.1073/pnas.1600282113. Epub 2016 Apr 19.
7
Vision and art: an interdisciplinary approach to neuroscience education.
J Undergrad Neurosci Educ. 2009 Fall;8(1):A10-7. Epub 2009 Oct 15.
8
Building neural networks within the academy: connecting neuroscience to other disciplines.
J Undergrad Neurosci Educ. 2009 Fall;8(1):A18-20. Epub 2009 Oct 15.
9
Discovering relations between mind, brain, and mental disorders using topic mapping.
PLoS Comput Biol. 2012;8(10):e1002707. doi: 10.1371/journal.pcbi.1002707. Epub 2012 Oct 11.
10
Large-scale automated synthesis of human functional neuroimaging data.
Nat Methods. 2011 Jun 26;8(8):665-70. doi: 10.1038/nmeth.1635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验