Suppr超能文献

2016年美国总统大选中县社区卫生协会的净投票转向情况。

County community health associations of net voting shift in the 2016 U.S. presidential election.

作者信息

Wasfy Jason H, Stewart Charles, Bhambhani Vijeta

机构信息

Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

Department of Political Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2017 Oct 2;12(10):e0185051. doi: 10.1371/journal.pone.0185051. eCollection 2017.

Abstract

IMPORTANCE

In the U.S. presidential election of 2016, substantial shift in voting patterns occurred relative to previous elections. Although this shift has been associated with both education and race, the extent to which this shift was related to public health status is unclear.

OBJECTIVE

To determine the extent to which county community health was associated with changes in voting between the presidential elections of 2016 and 2012.

DESIGN

Ecological study with principal component analysis (PCA) using principal axis method to extract the components, then generalized linear regression.

SETTING

General community.

PARTICIPANTS

All counties in the United States.

EXPOSURES

Physically unhealthy days, mentally unhealthy days, percent food insecure, teen birth rate, primary care physician visit rate, age-adjusted mortality rate, violent crime rate, average health care costs, percent diabetic, and percent overweight or obese.

MAIN OUTCOME

The percentage of Donald Trump votes in 2016 minus percentage of Mitt Romney votes in 2012 ("net voting shift").

RESULTS

Complete public health data was available for 3,009 counties which were included in the analysis. The mean net voting shift was 5.4% (+/- 5.8%). Of these 3,009 counties, 2,641 (87.8%) had positive net voting shift (shifted towards Trump) and 368 counties (12.2%) had negative net voting shift (shifted away from Trump). The first principal component ("unhealthy score") accounted for 68% of the total variance in the data. The unhealthy score included all health variables except primary care physician rate, violent crime rate, and health care costs. The mean unhealthy score for counties was 0.39 (SD 0.16). Higher normalized unhealthy score was associated with positive net voting shift (22.1% shift per unit unhealthy, p < 0.0001). This association was stronger in states that switched Electoral College votes from 2012 to 2016 than in other states (5.9% per unit unhealthy, p <0.0001).

CONCLUSIONS AND RELEVANCE

Substantial association exists between a shift toward voting for Donald Trump in 2016 relative to Mitt Romney in 2012 and measures of poor public health. Although these results do not demonstrate causality, these results suggest a possible role for health status in political choices.

摘要

重要性

在2016年美国总统选举中,投票模式相对于以往选举发生了重大转变。尽管这种转变与教育和种族都有关联,但这种转变与公众健康状况的关联程度尚不清楚。

目的

确定2016年与2012年总统选举期间,县社区健康状况与投票变化之间的关联程度。

设计

采用主成分分析(PCA)的生态研究,使用主轴法提取成分,然后进行广义线性回归。

设置

一般社区。

参与者

美国所有县。

暴露因素

身体不健康天数、精神不健康天数、粮食不安全百分比、青少年出生率、初级保健医生就诊率、年龄调整死亡率、暴力犯罪率、平均医疗保健费用、糖尿病百分比以及超重或肥胖百分比。

主要结局

2016年唐纳德·特朗普的得票率减去2012年米特·罗姆尼的得票率(“净投票转变”)。

结果

分析纳入了3009个县的完整公共卫生数据。平均净投票转变为5.4%(±5.8%)。在这3009个县中,2641个(87.8%)有正的净投票转变(转向特朗普),368个县(12.2%)有负的净投票转变(背离特朗普)。第一个主成分(“不健康得分”)占数据总方差的68%。不健康得分包括除初级保健医生率、暴力犯罪率和医疗保健费用之外的所有健康变量。各县的平均不健康得分为0.39(标准差0.16)。较高的标准化不健康得分与正的净投票转变相关(每单位不健康得分转变22.1%,p<0.0001)。在2012年至2016年选举中改变总统选举团投票的州,这种关联比其他州更强(每单位不健康得分转变5.9%,p<0.0001)。

结论与相关性

相对于2012年投票给米特·罗姆尼,2016年投票给唐纳德·特朗普的转变与不良公共卫生指标之间存在显著关联。尽管这些结果并未证明因果关系,但这些结果表明健康状况在政治选择中可能发挥作用。

相似文献

1
County community health associations of net voting shift in the 2016 U.S. presidential election.
PLoS One. 2017 Oct 2;12(10):e0185051. doi: 10.1371/journal.pone.0185051. eCollection 2017.
2
Relationship of public health with continued shifting of party voting in the United States.
Soc Sci Med. 2020 May;252:112921. doi: 10.1016/j.socscimed.2020.112921. Epub 2020 Mar 13.
3
Toward a Developmental Science of Politics.
Monogr Soc Res Child Dev. 2019 Sep;84(3):7-185. doi: 10.1111/mono.12410.
4
Independent Relationship of Changes in Death Rates with Changes in US Presidential Voting.
J Gen Intern Med. 2019 Mar;34(3):363-371. doi: 10.1007/s11606-018-4568-6. Epub 2018 Sep 5.
5
Demographic change and the 2016 presidential election.
Soc Sci Res. 2021 Mar;95:102459. doi: 10.1016/j.ssresearch.2020.102459. Epub 2020 Aug 14.
6
Diverging Life Expectancies and Voting Patterns in the 2016 US Presidential Election.
Am J Public Health. 2017 Oct;107(10):1560-1562. doi: 10.2105/AJPH.2017.303945. Epub 2017 Aug 17.
7
Viewing the US presidential electoral map through the lens of public health.
PLoS One. 2021 Jul 21;16(7):e0254001. doi: 10.1371/journal.pone.0254001. eCollection 2021.
8
Sexism, racism, and nationalism: Factors associated with the 2016 U.S. presidential election results?
PLoS One. 2020 Mar 9;15(3):e0229432. doi: 10.1371/journal.pone.0229432. eCollection 2020.
9
10
Life expectancy and voting patterns in the 2020 U.S. presidential election.
SSM Popul Health. 2021 Jun 8;15:100840. doi: 10.1016/j.ssmph.2021.100840. eCollection 2021 Sep.

引用本文的文献

1
The role of health and health systems in shaping political engagement and rebuilding trust in democratic institutions.
Lancet Reg Health Eur. 2025 May 14;53:101326. doi: 10.1016/j.lanepe.2025.101326. eCollection 2025 Jun.
2
Population health, not individual health, drives support for populist parties.
PNAS Nexus. 2022 May 19;1(3):pgac057. doi: 10.1093/pnasnexus/pgac057. eCollection 2022 Jul.
3
Viewing the US presidential electoral map through the lens of public health.
PLoS One. 2021 Jul 21;16(7):e0254001. doi: 10.1371/journal.pone.0254001. eCollection 2021.
5
Health and voting over the course of adulthood: Evidence from two British birth cohorts.
SSM Popul Health. 2019 Dec 16;10:100531. doi: 10.1016/j.ssmph.2019.100531. eCollection 2020 Apr.
6
A Population Health Perspective on the Trump Administration, Brexit, and Right-Wing Populism in Europe.
Am J Public Health. 2020 Mar;110(3):274-276. doi: 10.2105/AJPH.2019.305535.
7
Deaths of Despair and Brexit Votes: Cross-Local Authority Statistical Analysis in England and Wales.
Am J Public Health. 2020 Mar;110(3):401-406. doi: 10.2105/AJPH.2019.305488. Epub 2019 Dec 19.
8
Association of Chronic Opioid Use With Presidential Voting Patterns in US Counties in 2016.
JAMA Netw Open. 2018 Jun 1;1(2):e180450. doi: 10.1001/jamanetworkopen.2018.0450.
9
Independent Relationship of Changes in Death Rates with Changes in US Presidential Voting.
J Gen Intern Med. 2019 Mar;34(3):363-371. doi: 10.1007/s11606-018-4568-6. Epub 2018 Sep 5.
10
Population well-being and electoral shifts.
PLoS One. 2018 Mar 12;13(3):e0193401. doi: 10.1371/journal.pone.0193401. eCollection 2018.

本文引用的文献

1
Incorporating Health into Studies of Political Behavior: Evidence for Turnout and Partisanship.
Polit Res Q. 2015 Mar;68(1):104-116. doi: 10.1177/1065912914563548. Epub 2014 Dec 23.
2
Diverging Life Expectancies and Voting Patterns in the 2016 US Presidential Election.
Am J Public Health. 2017 Oct;107(10):1560-1562. doi: 10.2105/AJPH.2017.303945. Epub 2017 Aug 17.
3
Health Care in the 2016 Election - A View through Voters' Polarized Lenses.
N Engl J Med. 2016 Oct 27;375(17):e37. doi: 10.1056/NEJMsr1606159.
4
My Vision for Universal, Quality, Affordable Health Care.
N Engl J Med. 2016 Oct 27;375(17):e36. doi: 10.1056/NEJMsb1612292. Epub 2016 Sep 28.
5
State-Level Voting Patterns and Adolescent Vaccination Coverage in the United States, 2014.
Am J Public Health. 2016 Oct;106(10):1879-81. doi: 10.2105/AJPH.2016.303381. Epub 2016 Aug 23.
6
Depression and Political Participation.
Soc Sci Q. 2015 Nov;96(5):1226-1243. doi: 10.1111/ssqu.12173. Epub 2015 Jun 9.
7
In sickness and in health.
Politics Life Sci. 2015 Spring;34(1):28-43. doi: 10.1017/pls.2015.3.
8
Political party affiliation, political ideology and mortality.
J Epidemiol Community Health. 2015 May;69(5):423-31. doi: 10.1136/jech-2014-204803. Epub 2015 Jan 28.
10
Political ideology and health in Japan: a disaggregated analysis.
J Epidemiol Community Health. 2010 Sep;64(9):838-40. doi: 10.1136/jech.2009.097915. Epub 2010 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验