Suppr超能文献

基于分布的肺炎模式影像学变化检测:一项COVID-19病例研究。

Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study.

作者信息

C Pereira Sofia, Rocha Joana, Campilho Aurélio, Mendonça Ana Maria

机构信息

Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal.

Faculty of Engineering of the University of Porto, Portugal.

出版信息

Heliyon. 2024 Aug 5;10(16):e35677. doi: 10.1016/j.heliyon.2024.e35677. eCollection 2024 Aug 30.

Abstract

Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.

摘要

尽管胸部X光片的分类长期以来一直是一个广泛研究的课题,但随着COVID-19大流行的爆发,人们的兴趣显著增加。现有结果很有前景;然而,COVID-19与其他类型呼吸道疾病之间的放射学相似性限制了专注于单个实例的传统图像分类方法的成功率。本研究提出了一种新颖的观点,将COVID-19肺炎概念化为偏离典型肺炎模式的规范分布。使用基于人群的方法,我们的方法利用分布异常检测。该方法与传统的逐实例方法不同,它关注的是扫描集而不是单个图像。使用自动编码器提取特征表示,我们对COVID阳性和COVID阴性肺炎X光片之间的可分离性进行了基于实例和基于分布的评估。结果表明,所提出的基于分布的方法在识别与COVID阳性病例相关的放射学变化方面优于传统的基于实例的技术。这突出了其作为一种能够检测放射学数据中显著分布变化的早期预警系统的潜力。通过持续监测这些变化,这种方法提供了一种早期识别新出现的健康趋势的机制,有可能预示新大流行的开始并促使及时的公共卫生应对措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fe/11639430/71afe5e2a681/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验