Kolmogorov Vasilii S, Erofeev Alexander S, Woodcock Emily, Efremov Yuri M, Iakovlev Aleksei P, Savin Nikita A, Alova Anna V, Lavrushkina Svetlana V, Kireev Igor I, Prelovskaya Alexandra O, Sviderskaya Elena V, Scaini Denis, Klyachko Natalia L, Timashev Peter S, Takahashi Yasufumi, Salikhov Sergey V, Parkhomenko Yuri N, Majouga Alexander G, Edwards Christopher R W, Novak Pavel, Korchev Yuri E, Gorelkin Petr V
National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russian Federation.
Nanoscale. 2021 Apr 7;13(13):6558-6568. doi: 10.1039/d0nr08349f. Epub 2021 Mar 31.
Mechanical properties of living cells determined by cytoskeletal elements play a crucial role in a wide range of biological functions. However, low-stress mapping of mechanical properties with nanoscale resolution but with a minimal effect on the fragile structure of cells remains difficult. Scanning Ion-Conductance Microscopy (SICM) for quantitative nanomechanical mapping (QNM) is based on intrinsic force interactions between nanopipettes and samples and has been previously suggested as a promising alternative to conventional techniques. In this work, we have provided an alternative estimation of intrinsic force and stress and demonstrated the possibility to perform qualitative and quantitative analysis of cell nanomechanical properties of a variety of living cells. Force estimation on decane droplets with well-known elastic properties, similar to living cells, revealed that the forces applied using a nanopipette are much smaller than in the case using atomic force microscopy. We have shown that we can perform nanoscale topography and QNM using a scanning procedure with no detectable effect on live cells, allowing long-term QNM as well as detection of nanomechanical properties under drug-induced alterations of actin filaments and microtubulin.
由细胞骨架元件决定的活细胞机械性能在广泛的生物学功能中起着至关重要的作用。然而,以纳米级分辨率进行机械性能的低应力映射,同时对细胞脆弱结构的影响最小,仍然很困难。用于定量纳米力学映射(QNM)的扫描离子电导显微镜(SICM)基于纳米移液器与样品之间的内在力相互作用,此前已被认为是传统技术的一种有前途的替代方法。在这项工作中,我们提供了一种对内在力和应力的替代估计,并证明了对各种活细胞的细胞纳米力学性能进行定性和定量分析的可能性。对具有与活细胞相似的已知弹性特性的癸烷液滴进行力估计,结果表明,使用纳米移液器施加的力比使用原子力显微镜的情况要小得多。我们已经表明,我们可以使用扫描程序进行纳米级形貌和QNM,而对活细胞没有可检测到的影响,从而实现长期QNM以及在药物诱导的肌动蛋白丝和微管蛋白改变下检测纳米力学性能。