文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于加合物的有机半导体 p 型掺杂。

Adduct-based p-doping of organic semiconductors.

机构信息

Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.

出版信息

Nat Mater. 2021 Sep;20(9):1248-1254. doi: 10.1038/s41563-021-00980-x. Epub 2021 Apr 22.


DOI:10.1038/s41563-021-00980-x
PMID:33888905
Abstract

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

摘要

有机半导体的电子掺杂对于高效光电设备的应用至关重要。尽管基于分子和金属配合物的掺杂剂已经为基于有机半导体的设备带来了显著的进展,但如果要广泛转向大面积有机电子设备,仍然需要清洁、高效和低成本的掺杂剂。在这里,我们报告了二甲基亚砜加合物作为 p 型掺杂剂,它们满足一系列有机半导体的这些条件。这些基于加合物的掺杂剂与溶液和气相处理都兼容。我们探索了掺杂机制,并利用我们获得的知识将掺杂剂与抗衡离子的选择“解耦”。我们证明了使用溶液处理路线可以实现不对称 p 型掺杂,并在卤化金属钙钛矿太阳能电池、有机薄膜晶体管和有机发光二极管中展示了这种掺杂方法的多功能性。

相似文献

[1]
Adduct-based p-doping of organic semiconductors.

Nat Mater. 2021-9

[2]
Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.

Acc Chem Res. 2021-7-6

[3]
Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

Acc Chem Res. 2016-3-15

[4]
Controlling Molecular Doping in Organic Semiconductors.

Adv Mater. 2017-9-15

[5]
Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors.

Nat Mater. 2017-12

[6]
Transition metal-catalysed molecular n-doping of organic semiconductors.

Nature. 2021-11

[7]
Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors.

Adv Mater. 2023-6

[8]
Organometallic and Organic Dimers: Moderately Air-Stable, Yet Highly Reducing, n-Dopants.

Acc Chem Res. 2022-2-1

[9]
Electrical Doping of Metal Halide Perovskites by Co-Evaporation and Application in PN Junctions.

Adv Mater. 2024-7

[10]
Electrochemical Doping of Halide Perovskites by Noble Metal Interstitial Cations.

Adv Mater. 2023-7

引用本文的文献

[1]
A non-ionic fluorinated p-dopant enables the construction of efficient and stable perovskite solar cells.

Chem Sci. 2025-8-7

[2]
Disentangling degradation pathways of narrow bandgap lead-tin perovskite material and photovoltaic devices.

Nat Commun. 2025-7-1

[3]
Air-stable n-type dopant for organic semiconductors via a single-photon catalytic process.

Sci Adv. 2025-6-6

[4]
Self-cleaning Spiro-OMeTAD via multimetal doping for perovskite photovoltaics.

Nat Commun. 2025-5-5

[5]
Preparation of P-Doped Ni Catalyst Using Deep Eutectic Solvents and Its Excellent Hydrogen Evolution Performance in Water Splitting.

ChemistryOpen. 2025-8

[6]
Robust chelated lead octahedron surface for efficient and stable perovskite solar cells.

Nat Commun. 2024-9-4

[7]
Doping bilayer hole-transport polymer strategy stabilizing solution-processed green quantum-dot light-emitting diodes.

Sci Adv. 2024-8-16

[8]
Photocatalytic doping of organic semiconductors.

Nature. 2024-6

[9]
New Avenues for Organic Solar Cells Using Intrinsically Charge-Generating Materials.

JACS Au. 2024-3-18

[10]
Thermally cross-linkable fluorene-based hole transporting materials: synthesis, characterization, and application in perovskite solar cells.

RSC Adv. 2023-9-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索