Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Nat Mater. 2021 Sep;20(9):1248-1254. doi: 10.1038/s41563-021-00980-x. Epub 2021 Apr 22.
Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.
有机半导体的电子掺杂对于高效光电设备的应用至关重要。尽管基于分子和金属配合物的掺杂剂已经为基于有机半导体的设备带来了显著的进展,但如果要广泛转向大面积有机电子设备,仍然需要清洁、高效和低成本的掺杂剂。在这里,我们报告了二甲基亚砜加合物作为 p 型掺杂剂,它们满足一系列有机半导体的这些条件。这些基于加合物的掺杂剂与溶液和气相处理都兼容。我们探索了掺杂机制,并利用我们获得的知识将掺杂剂与抗衡离子的选择“解耦”。我们证明了使用溶液处理路线可以实现不对称 p 型掺杂,并在卤化金属钙钛矿太阳能电池、有机薄膜晶体管和有机发光二极管中展示了这种掺杂方法的多功能性。
Nat Mater. 2021-9
Acc Chem Res. 2021-7-6
Adv Mater. 2017-9-15
Nat Commun. 2025-5-5
Nature. 2024-6