Guo Han, Yang Chi-Yuan, Zhang Xianhe, Motta Alessandro, Feng Kui, Xia Yu, Shi Yongqiang, Wu Ziang, Yang Kun, Chen Jianhua, Liao Qiaogan, Tang Yumin, Sun Huiliang, Woo Han Young, Fabiano Simone, Facchetti Antonio, Guo Xugang
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Nature. 2021 Nov;599(7883):67-73. doi: 10.1038/s41586-021-03942-0. Epub 2021 Nov 3.
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd(dba)) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm; ref. ). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications.
化学掺杂是研究有机半导体中电荷传输以及改进某些(光)电子器件的关键过程。从根本上讲,n(电子)掺杂比p(空穴)掺杂更具挑战性,并且通常实现的掺杂效率(η)非常低,低于10%。一种高效的分子n掺杂剂应同时具有高还原能力和空气稳定性,以实现广泛的适用性,这极具挑战性。在此,我们展示了一种使用空气稳定的前体型分子掺杂剂对有机半导体进行催化n掺杂的通用概念。通过实验和理论证据评估,引入作为气相沉积纳米颗粒或可溶液加工的有机金属配合物(例如Pd(dba))的过渡金属(例如Pt、Au、Pd)可催化该反应,从而在更短的掺杂时间内实现大幅提高的η以及高电导率(高于100 S cm;参考文献)。这种方法对于实现改进的半导体器件具有技术意义,并为包含催化剂、分子掺杂剂和半导体的三元体系提供了广阔的探索空间,从而为n掺杂研究和应用开辟了新机遇。