Suppr超能文献

小儿手部骨折分诊预测模型的推导与内部验证

Derivation and Internal Validation of a Prediction Model for Pediatric Hand Fracture Triage.

作者信息

Hartley Rebecca L, Fraulin Frankie O G, Harrop A Robertson, Faris Peter, Wick James, Ronksley Paul E

机构信息

Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada.

Section of Pediatric Surgery, Department of Surgery, Alberta Children's Hospital, Calgary, Alberta, Canada.

出版信息

Plast Reconstr Surg Glob Open. 2021 Apr 20;9(4):e3543. doi: 10.1097/GOX.0000000000003543. eCollection 2021 Apr.

Abstract

BACKGROUND

Pediatric hand fractures are common, and most can be managed by a period of immobilization. However, it remains challenging to identify those more complex fractures requiring the expertise of a hand surgeon to ensure a good outcome. The purpose of this study was to develop a prediction model for identification of complex pediatric hand fractures requiring care by a hand surgeon.

METHODS

A 2-year retrospective cohort study of consecutively referred pediatric (<18 years) hand fracture patients was used to derive and internally validate a prediction model for identification of complex fractures requiring the expertise of a hand surgeon. These complex fractures were defined as those that required surgery, closed reduction, or four or more appointments with a hand surgeon. The model, derived by multivariable logistic regression analysis, was internally validated using bootstrapping and then translated into a risk index.

RESULTS

Of 1170 fractures, 416 (35.6%) met criteria for a complex fracture. Multivariable regression analysis identified six significant predictors of complex fracture: open fracture, rotational deformity, angulation, condylar involvement, dislocation or subluxation, and displacement. Internal validation demonstrated good performance of the model (C-statistic = 0.88, calibration curve = 0.935). A threshold of ≥1 point (ie, any one of the predictors) resulted in a simple, easy-to-use tool with 96.4% sensitivity and 45.5% specificity.

CONCLUSIONS

A high-performing and clinically useful decision support tool was developed for emergency and urgent care physicians providing initial assessment for children with hand fractures. This tool will provide the basis for development of a clinical care pathway for pediatric hand fractures.

摘要

背景

小儿手部骨折很常见,大多数可通过一段时间的固定治疗。然而,识别那些需要手外科医生专业知识以确保良好预后的更复杂骨折仍然具有挑战性。本研究的目的是开发一种预测模型,用于识别需要手外科医生治疗的复杂小儿手部骨折。

方法

对连续转诊的小儿(<18岁)手部骨折患者进行为期2年的回顾性队列研究,以推导并内部验证用于识别需要手外科医生专业知识的复杂骨折的预测模型。这些复杂骨折被定义为需要手术、闭合复位或与手外科医生进行四次或更多次会诊的骨折。通过多变量逻辑回归分析得出的模型,使用自举法进行内部验证,然后转化为风险指数。

结果

在1170例骨折中,416例(35.6%)符合复杂骨折标准。多变量回归分析确定了复杂骨折的六个重要预测因素:开放性骨折、旋转畸形、成角、髁突受累、脱位或半脱位以及移位。内部验证表明该模型性能良好(C统计量=0.88,校准曲线=0.935)。阈值≥1分(即任何一个预测因素)产生了一个简单易用的工具,灵敏度为96.4%,特异性为45.5%。

结论

为对手部骨折儿童进行初步评估的急诊和紧急护理医生开发了一种高性能且临床有用的决策支持工具。该工具将为小儿手部骨折临床护理路径的开发提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f376/8057756/0b4814b3db6c/gox-9-e3543-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验