Suppr超能文献

由羟基自由基引发的二甲基硫氧化生成新粒子及其生长过程

New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals.

作者信息

Rosati Bernadette, Christiansen Sigurd, Wollesen de Jonge Robin, Roldin Pontus, Jensen Mads Mørk, Wang Kai, Moosakutty Shamjad P, Thomsen Ditte, Salomonsen Camilla, Hyttinen Noora, Elm Jonas, Feilberg Anders, Glasius Marianne, Bilde Merete

机构信息

Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark.

Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna AT-1090, Austria.

出版信息

ACS Earth Space Chem. 2021 Apr 15;5(4):801-811. doi: 10.1021/acsearthspacechem.0c00333. Epub 2021 Mar 25.

Abstract

Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.

摘要

二甲基硫醚(DMS)由海洋中的浮游生物产生,是向大气中排放硫的最大自然来源。在本研究中,我们研究了气相DMS通过OH自由基氧化的主要途径产生的新粒子形成过程。我们特别关注在干燥条件下使用大气模拟舱AURA进行实验研究的粒子生长和质量产率。实验表明,50 - 200 ppb的DMS氧化产生的气溶胶质量产率较低(2 - 7%),且粒子生长速率(8.2 - 24.4 nm/h)与环境观测结果相当。使用甲磺酸(MSA)对高分辨率飞行时间气溶胶质谱仪(HR-ToF-AMS)进行校准,以考虑分布在有机和硫酸盐碎片表中的碎片。AMS得出的化学成分表明,在形成的二次气溶胶中,MSA总是比硫酸盐更占主导地位。使用用于实验室模拟舱研究的气溶胶动力学、气相和颗粒相化学动力学多层模型(ADCHAM)进行建模表明,仅主化学机理气相化学低估了实验观测到的粒子形成,需要DMS多相和自氧化化学来解释观测结果。基于量子化学计算,我们得出结论,环境大气中DMS氧化形成粒子很可能是由硫酸/MSA混合簇与胺和氨聚集驱动的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6407/8054244/3889a93a6c58/sp0c00333_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验