Suppr超能文献

基于临床、影像学和影像组学特征预测巨块型肝内胆管细胞癌的术后结局。

Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features.

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.

出版信息

Eur Radiol. 2021 Nov;31(11):8638-8648. doi: 10.1007/s00330-021-07926-6. Epub 2021 Apr 23.

Abstract

OBJECTIVES

Current prognostic systems for intrahepatic cholangiocarcinoma (IHCC) rely on surgical pathology data and are not applicable to a preoperative setting. We aimed to develop and validate preoperative models to predict postsurgical outcomes in mass-forming IHCC patients based on clinical, radiologic, and radiomics features.

METHODS

This multicenter retrospective cohort study included patients who underwent curative-intent resection for mass-forming IHCC. In the development cohort (single institution data), three preoperative multivariable Cox models for predicting recurrence-free survival (RFS) were constructed, including the clinical-radiologic, radiomics, and clinical-radiologic-radiomics (CRR) models based on clinical and CT findings, CT-radiomics features, and a combination of both, respectively. Model performance was evaluated in the test cohort (data from five institutions) using Harrell's C-index and compared with postoperative prognostic systems.

RESULTS

A total of 345 patients (233, development cohort; 112, test cohort) were evaluated. The clinical-radiologic model included five independent CT predictors (infiltrative contour, multiplicity, periductal infiltration, extrahepatic organ invasion, and suspicious metastatic lymph node) and showed similar performance in predicting RFS to the radiomics model (C-index, 0.65 vs. 0.68; p = 0.43 in the test cohort). The CRR model showed significantly improved performance (C-index, 0.71; p = 0.01) than the clinical-radiologic model and demonstrated similar performance to the postoperative prognostic systems in predicting RFS (C-index, 0.71-0.73 vs. 0.70-0.73; p ≥ 0.40) and overall survival (C-index, 0.68-0.71 vs. 0.64-0.74; p ≥ 0.27) in the test cohort.

CONCLUSIONS

A model integrating clinical, CT, and radiomics information may be useful for the preoperative assessment of postsurgical outcomes in patients with mass-forming IHCC.

KEY POINTS

• The radiomics analysis had incremental value in predicting recurrence-free survival of patients with intrahepatic mass-forming cholangiocarcinoma. • The clinical-radiologic-radiomics model demonstrated similar performance to the postoperatively available prognostic systems (including 8th AJCC system) in predicting recurrence-free survival and overall survival. • The clinical-radiologic-radiomics model may be useful for the preoperative assessment of postsurgical outcomes in patients with mass-forming intrahepatic cholangiocarcinoma.

摘要

目的

目前用于肝内胆管细胞癌(IHCC)的预后系统依赖于手术病理学数据,并不适用于术前环境。我们旨在基于临床、影像学和放射组学特征,为肿块型 IHCC 患者建立并验证预测术后结局的术前模型。

方法

这项多中心回顾性队列研究纳入了接受根治性切除术治疗肿块型 IHCC 的患者。在开发队列(单机构数据)中,我们构建了三个用于预测无复发生存率(RFS)的术前多变量 Cox 模型,分别为基于临床和 CT 表现的临床-影像学模型、放射组学模型以及临床-影像学-放射组学(CRR)模型,这些模型分别基于临床和 CT 特征、CT-放射组学特征以及两者的组合。在测试队列(来自五个机构的数据)中,我们使用 Harrell 的 C 指数评估模型性能,并与术后预后系统进行比较。

结果

共评估了 345 名患者(233 名,开发队列;112 名,测试队列)。临床-影像学模型包括五个独立的 CT 预测因素(浸润性轮廓、多发性、管周浸润、肝外器官侵犯和可疑转移性淋巴结),其在预测 RFS 方面与放射组学模型的表现相似(C 指数,0.65 对 0.68;p = 0.43,在测试队列中)。CRR 模型的表现明显优于临床-影像学模型(C 指数,0.71;p = 0.01),并在预测 RFS 和总生存方面与术后预后系统具有相似的表现(C 指数,0.71-0.73 对 0.70-0.73;p ≥ 0.40)和 0.68-0.71 对 0.64-0.74(p ≥ 0.27,在测试队列中)。

结论

整合临床、CT 和放射组学信息的模型可能有助于术前评估肿块型 IHCC 患者的术后结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验