Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P. R. China.
Department of Nephrology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P. R. China.
ACS Appl Mater Interfaces. 2021 May 5;13(17):19710-19725. doi: 10.1021/acsami.1c03010. Epub 2021 Apr 23.
Treatment resistance of the tumors to photodynamic therapy (PDT) owing to O deficiency largely compromised the therapeutic efficacy, which could be addressed modulating oxygen levels by using O self-enriched nanosystems. Here, we report on augmenting the O-evolving strategy based on a biomimetic, catalytic nanovehicle (named as N/P@MCC), constructed by the catalase-immobilized hollow mesoporous nanospheres by enveloping a cancer cell membrane (CCM), which acts as an efficient nanocontainer to accommodate nitrogen-doped graphene quantum dots (N-GQDs) and protoporphyrin IX (PpIX). Inheriting the virtues of biomimetic CCM cloaking, the CCM-derived shell conferred N/P@MCC nanovehicles with highly specific self-recognition and homotypic targeting toward cancerous cells, ensuring tumor-specific accumulation and superior circulation durations. N-GQDs, for the first time, have been evidenced as a new dual-functional nanoagents with PTT and PDT capacities, enabling the generation of O for PDT and inducing local low-temperature hyperthermia for thermally ablating cancer cells and infrared thermal imaging (IRT). Leveraging the intrinsic catalytic features of catalase, such N/P@MCC nanovehicles effectively scavenged the excessive HO to sustainably evolve oxygen for a synchronous O self-supply and hypoxia alleviation, with an additional benefit because the resulting O bubbles could function as an echo amplifier, leading to the sufficient echogenic reflectivity for ultrasound imaging. Concurrently, the elevated O reacted with N-GQDs and PpIX to elicit a maximally increased O output for augmented PDT. Significantly, the ultrasound imaging coupled with fluorescence imaging, IRT, performs a tumor-modulated trimodal bioimaging effect. Overall, this offers a paradigm to rationally explore O self-supply strategies focused on versatile nanotheranostics for hypoxic tumor elimination.
由于肿瘤的氧缺乏导致对光动力疗法 (PDT) 的治疗抵抗性,极大地降低了治疗效果,这可以通过使用富氧纳米系统来调节氧水平来解决。在这里,我们报告了一种基于仿生催化纳米载体(命名为 N/P@MCC)的 O 演化策略的增强,该载体由固定化过氧化物酶的中空介孔纳米球构建,通过包裹细胞膜(CCM),作为一种有效的纳米容器,容纳氮掺杂石墨烯量子点(N-GQDs)和原卟啉 IX(PpIX)。继承仿生 CCM 包被的优点,CCM 衍生的壳赋予 N/P@MCC 纳米载体对癌细胞具有高度特异性的自我识别和同型靶向,确保肿瘤特异性积累和优异的循环持续时间。首次证明 N-GQDs 是具有 PTT 和 PDT 能力的新型双重功能纳米剂,能够为 PDT 产生 O,并诱导局部低温热疗以热消融癌细胞和红外热成像(IRT)。利用过氧化物酶的固有催化特性,这种 N/P@MCC 纳米载体有效地清除了过量的 HO,以可持续地为同步 O 自供和缺氧缓解提供氧气,其额外的好处是,由此产生的 O 气泡可以作为回声放大器,导致足够的超声成像回声反射率。同时,升高的 O 与 N-GQDs 和 PpIX 反应,引发最大程度增加的 O 输出以增强 PDT。重要的是,超声成像与荧光成像、IRT 联合使用,实现了肿瘤调节的三模态生物成像效果。总体而言,这为探索基于多功能纳米治疗学的 O 自供策略提供了范例,以针对缺氧肿瘤消除。