Suppr超能文献

常规收集的数据在评估家庭评估与改造干预措施以预防老年人跌倒中的价值:系统文献综述

The Value of Routinely Collected Data in Evaluating Home Assessment and Modification Interventions to Prevent Falls in Older People: Systematic Literature Review.

作者信息

Daniels Helen, Hollinghurst Joe, Fry Richard, Clegg Andrew, Hillcoat-Nallétamby Sarah, Nikolova Silviya, Rodgers Sarah E, Williams Neil, Akbari Ashley

机构信息

Population Data Science, Swansea University, Swansea, United Kingdom.

Academic Unit of Elderly Care and Rehabilitation, University of Leeds, Leeds, United Kingdom.

出版信息

JMIR Aging. 2021 Apr 23;4(2):e24728. doi: 10.2196/24728.

Abstract

BACKGROUND

Falls in older people commonly occur at home. Home assessment and modification (HAM) interventions can be effective in reducing falls; however, there are some concerns over the validity of evaluation findings. Routinely collected data could improve the quality of HAM evaluations and strengthen their evidence base.

OBJECTIVE

The aim of this study is to conduct a systematic review of the evidence of the use of routinely collected data in the evaluations of HAM interventions.

METHODS

We searched the following databases from inception until January 31, 2020: PubMed, Ovid, CINAHL, OpenGrey, CENTRAL, LILACS, and Web of Knowledge. Eligible studies were those evaluating HAMs designed to reduce falls involving participants aged 60 years or more. We included study protocols and full reports. Bias was assessed using the Risk Of Bias In Non-Randomized Studies of Interventions (ROBINS-I) tool.

RESULTS

A total of 7 eligible studies were identified in 8 papers. Government organizations provided the majority of data across studies, with health care providers and third-sector organizations also providing data. Studies used a range of demographic, clinical and health, and administrative data. The purpose of using routinely collected data spanned recruiting and creating a sample, stratification, generating independent variables or covariates, and measuring key study-related outcomes. Nonhome-based modification interventions (eg, in nursing homes) using routinely collected data were not included in this study. We included two protocols, which meant that the results of those studies were not available. MeSH headings were excluded from the PubMed search because of a reduction in specificity. This means that some studies that met the inclusion criteria may not have been identified.

CONCLUSIONS

Routine data can be used successfully in many aspects of HAM evaluations and can reduce biases and improve other important design considerations. However, the use of these data in these studies is currently not widespread. There are a number of governance barriers to be overcome to allow these types of linkage and to ensure that the use of routinely collected data in evaluations of HAM interventions is exploited to its full potential.

摘要

背景

老年人跌倒通常发生在家中。家庭评估与改造(HAM)干预措施在减少跌倒方面可能有效;然而,人们对评估结果的有效性存在一些担忧。常规收集的数据可以提高HAM评估的质量并加强其证据基础。

目的

本研究的目的是对在HAM干预措施评估中使用常规收集数据的证据进行系统综述。

方法

我们检索了以下数据库,从数据库创建至2020年1月31日:PubMed、Ovid、CINAHL、OpenGrey、CENTRAL、LILACS和Web of Knowledge。符合条件的研究是那些评估旨在减少60岁及以上参与者跌倒的HAMs的研究。我们纳入了研究方案和完整报告。使用干预性非随机研究中的偏倚风险(ROBINS-I)工具评估偏倚。

结果

在8篇论文中总共确定了7项符合条件的研究。政府组织在各项研究中提供了大部分数据,医疗保健提供者和第三部门组织也提供了数据。研究使用了一系列人口统计学、临床和健康以及行政数据。使用常规收集数据的目的包括招募和创建样本、分层、生成自变量或协变量以及测量关键的研究相关结果。本研究未包括使用常规收集数据的非家庭式改造干预措施(例如在养老院)。我们纳入了两项方案,这意味着这些研究的结果不可用。由于特异性降低,PubMed搜索中排除了医学主题词。这意味着一些符合纳入标准的研究可能未被识别。

结论

常规数据可以成功用于HAM评估的许多方面,并可以减少偏倚并改善其他重要的设计考虑因素。然而,这些数据在这些研究中的使用目前并不广泛。要实现这类数据关联并确保在HAM干预措施评估中充分利用常规收集数据的潜力,还需要克服许多管理障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b274/8105762/f7f633a24ef1/aging_v4i2e24728_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验