Muscarella Loreta A, Hutter Eline M, Frost Jarvist M, Grimaldi Gianluca G, Versluis Jan, Bakker Huib J, Ehrler Bruno
Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Department of Chemistry, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands.
J Phys Chem Lett. 2021 May 6;12(17):4118-4124. doi: 10.1021/acs.jpclett.1c00676. Epub 2021 Apr 23.
Hot-carrier cooling (HCC) in metal halide perovskites above the Mott transition is significantly slower than in conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck, but the influence of the lattice properties on the HCC behavior is poorly understood. Using pressure-dependent transient absorption spectroscopy, we find that at an excitation density below the Mott transition, pressure does not affect the HCC. On the contrary, above the Mott transition, HCC in methylammonium lead iodide is around 2-3 times faster at 0.3 GPa than at ambient pressure. Our electron-phonon coupling calculations reveal ∼2-fold stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above the Mott transition. Altogether, these findings suggest a change in the nature of excited carriers above the Mott transition threshold, providing insights into the electronic behavior of devices operating at such high charge-carrier densities.
在莫特转变温度以上,金属卤化物钙钛矿中的热载流子冷却(HCC)比传统半导体中的热载流子冷却要慢得多。这种效应通常归因于热声子瓶颈,但晶格性质对HCC行为的影响却知之甚少。通过使用与压力相关的瞬态吸收光谱,我们发现,在低于莫特转变温度的激发密度下,压力不会影响HCC。相反,在高于莫特转变温度时,0.3吉帕压力下碘化甲铵中的HCC速度比常压下快约2至3倍。我们的电子-声子耦合计算表明,在0.3吉帕压力下,无机笼状模式的电子-声子耦合强度增强了约2倍。然而,我们的实验表明,压力仅在高于莫特转变温度时才会促进更快的HCC。总之,这些发现表明,在莫特转变阈值以上,激发载流子的性质发生了变化,这为在如此高电荷载流子密度下工作的器件的电子行为提供了见解。