文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2020ACR 数据科学研究所人工智能调查报告。

2020 ACR Data Science Institute Artificial Intelligence Survey.

机构信息

Chief Medical Officer ACR Data Science Institute, Department of Radiology, Grandview Medical Center, Birmingham, Alabama.

Lenox Hill Radiology, New York, New York.

出版信息

J Am Coll Radiol. 2021 Aug;18(8):1153-1159. doi: 10.1016/j.jacr.2021.04.002. Epub 2021 Apr 20.


DOI:10.1016/j.jacr.2021.04.002
PMID:33891859
Abstract

PURPOSE: The ACR Data Science Institute conducted its first annual survey of ACR members to understand how radiologists are using artificial intelligence (AI) in clinical practice and to provide a baseline for monitoring trends in AI use over time. METHODS: The ACR Data Science Institute sent a brief electronic survey to all ACR members via email. Invitees were asked for demographic information about their practice and if and how they were currently using AI as part of their clinical work. They were also asked to evaluate the performance of AI models in their practices and to assess future needs. RESULTS: Approximately 30% of radiologists are currently using AI as part of their practice. Large practices were more likely to use AI than smaller ones, and of those using AI in clinical practice, most were using AI to enhance interpretation, most commonly detection of intracranial hemorrhage, pulmonary emboli, and mammographic abnormalities. Of practices not currently using AI, 20% plan to purchase AI tools in the next 1 to 5 years. CONCLUSION: The survey results indicate a modest penetrance of AI in clinical practice. Information from the survey will help researchers and industry develop AI tools that will enhance radiological practice and improve quality and efficiency in patient care.

摘要

目的:ACR 数据科学研究所对 ACR 成员进行了首次年度调查,以了解放射科医生如何在临床实践中使用人工智能 (AI),并为监测 AI 使用趋势随时间的变化提供基线。

方法:ACR 数据科学研究所通过电子邮件向所有 ACR 成员发送了一份简短的电子调查。邀请者被要求提供有关其实践的人口统计学信息,以及他们是否正在将 AI 作为其临床工作的一部分使用,并要求他们评估 AI 模型在其实践中的性能,并评估未来的需求。

结果:约 30%的放射科医生目前正在将 AI 应用于其工作中。大型实践比小型实践更有可能使用 AI,而在临床实践中使用 AI 的人中,大多数人使用 AI 来增强解释,最常见的是检测颅内出血、肺栓塞和乳房 X 线异常。目前未使用 AI 的实践中,有 20%计划在未来 1 至 5 年内购买 AI 工具。

结论:调查结果表明,AI 在临床实践中的应用率适中。调查信息将帮助研究人员和行业开发 AI 工具,从而增强放射科实践,并提高患者护理的质量和效率。

相似文献

[1]
2020 ACR Data Science Institute Artificial Intelligence Survey.

J Am Coll Radiol. 2021-8

[2]
The Role of the ACR Data Science Institute in Advancing Health Equity in Radiology.

J Am Coll Radiol. 2019-4

[3]
Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey.

Radiol Med. 2021-1

[4]
Attitudes Toward Artificial Intelligence Among Radiologists, IT Specialists, and Industry.

Acad Radiol. 2021-6

[5]
Impact of the rise of artificial intelligence in radiology: What do radiologists think?

Diagn Interv Imaging. 2019-5-6

[6]
A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations.

Emerg Radiol. 2023-6

[7]
Artificial Intelligence and the Trainee Experience in Radiology.

J Am Coll Radiol. 2020-11

[8]
Artificial intelligence in paediatric radiology: international survey of health care professionals' opinions.

Pediatr Radiol. 2022-1

[9]
An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude.

Eur Radiol. 2021-9

[10]
Medical students' attitude towards artificial intelligence: a multicentre survey.

Eur Radiol. 2018-7-6

引用本文的文献

[1]
Utilizing multimodal artificial intelligence to advance cardiovascular diseases.

Precis Clin Med. 2025-7-17

[2]
Evaluating acute image ordering for real-world patient cases via language model alignment with radiological guidelines.

Commun Med (Lond). 2025-8-4

[3]
Artificial intelligence in orthopedics: fundamentals, current applications, and future perspectives.

Mil Med Res. 2025-8-4

[4]
Radiological data processing system: lifecycle management and annotation.

Int J Comput Assist Radiol Surg. 2025-6-20

[5]
Opportunities for Artificial Intelligence in Operational Medicine: Lessons from the United States Military.

Bioengineering (Basel). 2025-5-14

[6]
Patient Reactions to Artificial Intelligence-Clinician Discrepancies: Web-Based Randomized Experiment.

J Med Internet Res. 2025-5-22

[7]
Transformer-inspired training principles based breast cancer prediction: combining EfficientNetB0 and ResNet50.

Sci Rep. 2025-4-18

[8]
AI as teacher: effectiveness of an AI-based training module to improve trainee pediatric fracture detection.

Skeletal Radiol. 2025-4-14

[9]
How Do Radiologists Currently Monitor AI in Radiology and What Challenges Do They Face? An Interview Study and Qualitative Analysis.

J Imaging Inform Med. 2025-4-8

[10]
Diagnostic test accuracy of AI-assisted mammography for breast imaging: a narrative review.

PeerJ Comput Sci. 2025-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索