Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
Bone. 2021 Aug;149:115972. doi: 10.1016/j.bone.2021.115972. Epub 2021 Apr 21.
Fractures in vertebral bodies are among the most common complications of osteoporosis and other bone diseases. However, studies that aim to predict future fractures and assess general spine health must manually delineate vertebral bodies and intervertebral discs in imaging studies for further radiomic analysis. This study aims to develop a deep learning system that can automatically and rapidly segment (delineate) vertebrae and discs in MR, CT, and X-ray imaging studies.
We constructed a neural network to output 2D segmentations for MR, CT, and X-ray imaging studies. We trained the network on 4490 MR, 550 CT, and 1935 X-ray imaging studies (post-data augmentation) spanning a wide variety of patient populations, bone disease statuses, and ages from 2005 to 2020. Evaluated using 5-fold cross validation, the network was able to produce median Dice scores > 0.95 across all modalities for vertebral bodies and intervertebral discs (on the most central slice for MR/CT and on image for X-ray). Furthermore, radiomic features (skewness, kurtosis, mean of positive value pixels, and entropy) calculated from predicted segmentation masks were highly accurate (r ≥ 0.96 across all radiomic features when compared to ground truth). Mean time to produce outputs was <1.7 s across all modalities.
Our network was able to rapidly produce segmentations for vertebral bodies and intervertebral discs for MR, CT, and X-ray imaging studies. Furthermore, radiomic quantities derived from these segmentations were highly accurate. Since this network produced outputs rapidly for these modalities which are commonly used, it can be put to immediate use for radiomic and clinical imaging studies assessing spine health.
椎体骨折是骨质疏松症和其他骨病最常见的并发症之一。然而,旨在预测未来骨折和评估整体脊柱健康的研究必须在影像学研究中手动描绘椎体和椎间盘,以便进行进一步的放射组学分析。本研究旨在开发一种深度学习系统,该系统可以自动快速地对磁共振(MR)、计算机断层扫描(CT)和 X 射线成像研究中的椎体和椎间盘进行分割(描绘)。
我们构建了一个神经网络,为 MR、CT 和 X 射线成像研究输出 2D 分割。我们在 2005 年至 2020 年期间,对来自广泛患者人群、不同骨骼疾病状态和年龄段的 4490 份 MR、550 份 CT 和 1935 份 X 射线成像研究(经数据扩充后)进行了网络训练。使用 5 倍交叉验证评估,该网络能够在所有模态下为椎体和椎间盘生成中位数 Dice 得分>0.95(MR/CT 的最中央切片和 X 射线的图像上)。此外,从预测分割掩模计算得出的放射组学特征(偏度、峰度、正值像素平均值和熵)具有很高的准确性(与真实值相比,所有放射组学特征的 r 值均≥0.96)。在所有模态下,生成输出的平均时间都<1.7s。
我们的网络能够快速生成 MR、CT 和 X 射线成像研究中椎体和椎间盘的分割。此外,从这些分割中得出的放射组学数量具有很高的准确性。由于该网络能够快速为这些常用的模态生成输出,因此可以立即用于评估脊柱健康的放射组学和临床影像学研究。