Suppr超能文献

人工智能在骨质疏松症管理中的发展和报告。

Development and reporting of artificial intelligence in osteoporosis management.

机构信息

Interdisciplinary Center of Bone Diseases, Rheumatology Unit, Bone and Joint Department, Lausanne University Hospital and University of Lausanne, Av. Pierre-Decker 4, 1011 Lausanne, Switzerland.

Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

出版信息

J Bone Miner Res. 2024 Oct 29;39(11):1553-1573. doi: 10.1093/jbmr/zjae131.

Abstract

An abundance of medical data and enhanced computational power have led to a surge in artificial intelligence (AI) applications. Published studies involving AI in bone and osteoporosis research have increased exponentially, raising the need for transparent model development and reporting strategies. This review offers a comprehensive overview and systematic quality assessment of AI articles in osteoporosis while highlighting recent advancements. A systematic search in the PubMed database, from December 17, 2020 to February 1, 2023 was conducted to identify AI articles that relate to osteoporosis. The quality assessment of the studies relied on the systematic evaluation of 12 quality items derived from the minimum information about clinical artificial intelligence modeling checklist. The systematic search yielded 97 articles that fell into 5 areas; bone properties assessment (11 articles), osteoporosis classification (26 articles), fracture detection/classification (25 articles), risk prediction (24 articles), and bone segmentation (11 articles). The average quality score for each study area was 8.9 (range: 7-11) for bone properties assessment, 7.8 (range: 5-11) for osteoporosis classification, 8.4 (range: 7-11) for fracture detection, 7.6 (range: 4-11) for risk prediction, and 9.0 (range: 6-11) for bone segmentation. A sixth area, AI-driven clinical decision support, identified the studies from the 5 preceding areas that aimed to improve clinician efficiency, diagnostic accuracy, and patient outcomes through AI-driven models and opportunistic screening by automating or assisting with specific clinical tasks in complex scenarios. The current work highlights disparities in study quality and a lack of standardized reporting practices. Despite these limitations, a wide range of models and examination strategies have shown promising outcomes to aid in the earlier diagnosis and improve clinical decision-making. Through careful consideration of sources of bias in model performance assessment, the field can build confidence in AI-based approaches, ultimately leading to improved clinical workflows and patient outcomes.

摘要

大量的医学数据和增强的计算能力推动了人工智能 (AI) 应用的激增。涉及骨骼和骨质疏松症研究的 AI 的已发表研究呈指数级增长,这就需要透明的模型开发和报告策略。本综述全面概述和系统评估了骨质疏松症中的 AI 文章,并强调了最新进展。从 2020 年 12 月 17 日至 2023 年 2 月 1 日,在 PubMed 数据库中进行了系统检索,以确定与骨质疏松症相关的 AI 文章。研究质量评估依赖于对源自临床人工智能建模清单的最低信息的 12 个质量项目的系统评价。系统检索共获得 97 篇文章,分为 5 个领域;骨骼特性评估(11 篇文章)、骨质疏松症分类(26 篇文章)、骨折检测/分类(25 篇文章)、风险预测(24 篇文章)和骨骼分割(11 篇文章)。每个研究领域的平均质量评分分别为骨骼特性评估 8.9(范围:7-11)、骨质疏松症分类 7.8(范围:5-11)、骨折检测 8.4(范围:7-11)、风险预测 7.6(范围:4-11)和骨骼分割 9.0(范围:6-11)。第六个领域,AI 驱动的临床决策支持,确定了前 5 个领域中旨在通过 AI 驱动的模型和机会性筛查来提高临床医生的效率、诊断准确性和患者结局的研究,通过在复杂情况下自动执行或协助特定的临床任务来实现。当前的工作强调了研究质量的差异和缺乏标准化的报告实践。尽管存在这些局限性,但广泛的模型和检查策略已显示出有希望的结果,有助于早期诊断和改善临床决策。通过仔细考虑模型性能评估中的偏差来源,该领域可以对基于 AI 的方法建立信心,最终改善临床工作流程和患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c62/11523092/a30453d89d96/zjae131ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验