Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK.
Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
Brain. 2021 Nov 29;144(10):2946-2953. doi: 10.1093/brain/awab165.
Dementia is a highly heterogeneous condition, with pronounced individual differences in age of onset, clinical presentation, progression rates and neuropathological hallmarks, even within a specific diagnostic group. However, the most common statistical designs used in dementia research studies and clinical trials overlook this heterogeneity, instead relying on comparisons of group average differences (e.g. patient versus control or treatment versus placebo), implicitly assuming within-group homogeneity. This one-size-fits-all approach potentially limits our understanding of dementia aetiology, hindering the identification of effective treatments. Neuroimaging has enabled the characterization of the average neuroanatomical substrates of dementias; however, the increasing availability of large open neuroimaging datasets provides the opportunity to examine patterns of neuroanatomical variability in individual patients. In this update, we outline the causes and consequences of heterogeneity in dementia and discuss recent research that aims to tackle heterogeneity directly, rather than assuming that dementia affects everyone in the same way. We introduce spatial normative modelling as an emerging data-driven technique, which can be applied to dementia data to model neuroanatomical variation, capturing individualized neurobiological 'fingerprints'. Such methods have the potential to detect clinically relevant subtypes, track an individual's disease progression or evaluate treatment responses, with the goal of moving towards precision medicine for dementia.
痴呆是一种高度异质的疾病,即使在特定的诊断组别内,其发病年龄、临床表现、进展速度和神经病理学特征也存在明显的个体差异。然而,痴呆症研究和临床试验中最常用的统计设计忽略了这种异质性,而是依赖于组间平均差异的比较(例如患者与对照或治疗与安慰剂),隐含地假设组内同质性。这种一刀切的方法可能限制了我们对痴呆症病因的理解,阻碍了有效治疗方法的确定。神经影像学使我们能够描述痴呆症的平均神经解剖学基础;然而,越来越多的大型开放神经影像学数据集的出现提供了机会,可以在个体患者中检查神经解剖学变异性的模式。在本次更新中,我们概述了痴呆症中异质性的原因和后果,并讨论了最近旨在直接解决异质性而不是假设痴呆症以同样方式影响每个人的研究。我们介绍了空间规范建模作为一种新兴的数据驱动技术,可应用于痴呆症数据来模拟神经解剖学变异性,捕捉个体化的神经生物学“指纹”。这些方法有可能检测到临床相关的亚型,跟踪个体的疾病进展或评估治疗反应,从而为痴呆症的精准医学奠定基础。