Suppr超能文献

基于深度学习的癌症输血需求检测用纳米模糊报警系统。

Nano fuzzy alarming system for blood transfusion requirement detection in cancer using deep learning.

机构信息

Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Department of Internal Medicine, Firoozgar General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2024 Jul 10;14(1):15958. doi: 10.1038/s41598-024-66607-8.

Abstract

Periodic blood transfusion is a need in cancer patients in which the disease process as well as the chemotherapy can disrupt the natural production of blood cells. However, there are concerns about blood transfusion side effects, the cost, and the availability of donated blood. Therefore, predicting the timely requirement for blood transfusion considering patient variability is a need, and here for the first-time deal with this issue in blood cancer using in vivo data. First, a data set of 98 samples of blood cancer patients including 61 features of demographic, clinical, and laboratory data are collected. After performing multivariate analysis and the approval of an expert, effective parameters are derived. Then using a deep recurrent neural network, a system is presented to predict a need for packed red blood cell transfusion. Here, we use a Long Short-Term Memory (LSTM) neural network for modeling and the cross-validation technique with 5 layers for validation of the model along with comparing the result with networking and non-networking machine learning algorithms including bidirectional LSTM, AdaBoost, bagging decision tree based, bagging KNeighbors, and Multi-Layer Perceptron (MLP). Results show the LSTM outperforms the other methods. Then, using the swarm of fuzzy bioinspired nanomachines and the most effective parameters of Hgb, PaO, and pH, we propose a feasibility study on nano fuzzy alarming system (NFABT) for blood transfusion requirements. Alarming decisions using the Internet of Things (IoT) gateway are delivered to the physician for performing medical actions. Also, NFABT is considered a real-time non-invasive AI-based hemoglobin monitoring and alarming method. Results show the merits of the proposed method.

摘要

周期性输血是癌症患者的一种需求,疾病过程和化疗都会破坏血细胞的自然产生。然而,人们对输血的副作用、成本和献血的可用性存在担忧。因此,预测考虑患者个体差异的及时输血需求是必要的,在这里,我们首次使用体内数据来处理血液癌症中的这个问题。首先,收集了 98 例血液癌症患者的数据,包括 61 项人口统计学、临床和实验室数据特征。经过多元分析和专家认可,得出了有效的参数。然后,我们使用深度递归神经网络,提出了一种用于预测需要输注浓缩红细胞的系统。在这里,我们使用长短期记忆 (LSTM) 神经网络进行建模,并使用 5 层的交叉验证技术验证模型,同时将结果与网络和非网络机器学习算法进行比较,包括双向 LSTM、AdaBoost、基于袋装决策树、袋装 KNeighbors 和多层感知机 (MLP)。结果表明,LSTM 优于其他方法。然后,我们使用模糊生物启发纳米机器人群和 Hgb、PaO 和 pH 的最有效参数,提出了一种用于输血需求的纳米模糊报警系统 (NFABT) 的可行性研究。使用物联网 (IoT) 网关进行报警决策,并将其传递给医生以执行医疗操作。此外,NFABT 被认为是一种实时、非侵入性的基于人工智能的血红蛋白监测和报警方法。结果表明了该方法的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf6b/11237028/0919782b01bf/41598_2024_66607_Fig1_HTML.jpg

相似文献

2
Deep convolutional neural network and IoT technology for healthcare.
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
3
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
4
Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
Results Phys. 2021 Aug;27:104495. doi: 10.1016/j.rinp.2021.104495. Epub 2021 Jun 26.
5
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.
7
A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
Neural Netw. 2019 Oct;118:208-219. doi: 10.1016/j.neunet.2019.06.010. Epub 2019 Jul 2.
10
A Novel Self-Organizing Fuzzy Neural Network to Learn and Mimic Habitual Sequential Tasks.
IEEE Trans Cybern. 2022 Jan;52(1):323-332. doi: 10.1109/TCYB.2020.2984646. Epub 2022 Jan 11.

本文引用的文献

1
New frontiers in neonatal red blood cell transfusion research.
J Perinatol. 2023 Nov;43(11):1349-1356. doi: 10.1038/s41372-023-01757-7. Epub 2023 Sep 4.
3
Baseline immune signature score of Tregs × HLA-DRCD4 T cells × PD1CD8 T cells predicts outcome to immunotherapy in cancer patients.
Front Immunol. 2022 Nov 28;13:1054161. doi: 10.3389/fimmu.2022.1054161. eCollection 2022.
4
A novel model forecasting perioperative red blood cell transfusion.
Sci Rep. 2022 Sep 27;12(1):16127. doi: 10.1038/s41598-022-20543-7.
5
Collaborative Machine Learning: Schemes, Robustness, and Privacy.
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):9625-9642. doi: 10.1109/TNNLS.2022.3169347. Epub 2023 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验