Pharmaceutical Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt.
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
Photodiagnosis Photodyn Ther. 2021 Jun;34:102301. doi: 10.1016/j.pdpdt.2021.102301. Epub 2021 Apr 21.
The growing emergence of microbial resistance to antibiotics represents a worldwide challenge. Antimicrobial photodynamic inactivation (aPDI) has been introduced as an alternative technique, especially when combined with nanotechnology. Therefore, this study was designed to investigate the therapeutic merits of combined aPDI and nanoemulsion in infections caused by resistant bacterial strains.
Cationic zinc (II) phthalocyanine nanoemulsions (ZnPc-NE) were prepared using isopropyl myristate (IPM) as oil phase, egg phosphatidylcholine (egg PC) as emulsifier, and N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB). Nanoemulsions were characterized for particle size, polydispersity, zeta potential, viscosity, and skin deposition. The in-vitro aPDI was investigated on human resistant pathogens; gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative Multidrug-resistant strain of Escherichia coli (MDR E. coli), under different experimental conditions. In addition, in-vivo model of abrasion wound infected by MDR E. coli was induced in rats to investigate the therapeutic potential of the selected formulation.
It was evident that the selected ZnPc formulation (20 % IPM, 2 % egg PC and 0.5 % CTAB) displayed a particle size of 209.9 nm, zeta potential +73.1 mV, and 23.66 % deposition of ZnPc in skin layers. Furthermore, the selected formulation combined with light achieved almost 100 % eradication of the two bacterial strains, with superior bacterial load reduction and wound healing propertiesin-vivo, compared to either the nanoemulsion formulation or laser alone.
ZnPc nanoemulsion improved antimicrobial photodynamic therapy in inactivating resistant bacterial infections and provided a promising therapeutic means of treating serious infections, and hence could be applied in diseases caused by other bacterial strains.
微生物对抗生素的耐药性不断增强,这是一个全球性的挑战。光动力抗菌疗法(aPDI)已被引入作为一种替代技术,尤其是与纳米技术结合使用时。因此,本研究旨在探讨联合 aPDI 和纳米乳剂在耐药菌株感染中的治疗价值。
使用肉豆蔻酸异丙酯(IPM)作为油相、蛋黄卵磷脂(egg PC)作为乳化剂和 N-十六烷基-N,N,N-三甲基溴化铵(CTAB)制备阳离子锌(II)酞菁纳米乳剂(ZnPc-NE)。对纳米乳剂的粒径、多分散性、Zeta 电位、粘度和皮肤沉积进行了表征。在不同的实验条件下,对人源耐药病原体——革兰氏阳性耐甲氧西林金黄色葡萄球菌(MRSA)和革兰氏阴性多药耐药大肠杆菌(MDR 大肠杆菌)进行了体外 aPDI 研究。此外,在大鼠中诱导 MDR 大肠杆菌感染的擦伤伤口模型,以研究所选制剂的治疗潜力。
所选的 ZnPc 制剂(20%IPM、2%egg PC 和 0.5%CTAB)显示出 209.9nm 的粒径、+73.1mV 的 Zeta 电位和 23.66%的 ZnPc 在皮肤层中的沉积。此外,与纳米乳剂制剂或单独激光相比,该制剂与光结合几乎能 100%根除两种细菌,具有更好的细菌负荷降低和体内伤口愈合性能。
ZnPc 纳米乳剂改善了光动力抗菌疗法对耐药细菌感染的作用,为治疗严重感染提供了一种有前途的治疗手段,因此可应用于其他细菌菌株引起的疾病。