Suppr超能文献

在电子健康记录中识别发育性口吃和相关共病,并创建表型风险分类器。

Identifying developmental stuttering and associated comorbidities in electronic health records and creating a phenome risk classifier.

机构信息

Department of Hearing and Speech Sciences, Vanderbilt University, United States.

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, United States.

出版信息

J Fluency Disord. 2021 Jun;68:105847. doi: 10.1016/j.jfludis.2021.105847. Epub 2021 Apr 15.

Abstract

PURPOSE

This study aimed to identify cases of developmental stuttering and associated comorbidities in de-identified electronic health records (EHRs) at Vanderbilt University Medical Center, and, in turn, build and test a stuttering prediction model.

METHODS

A multi-step process including a keyword search of medical notes, a text-mining algorithm, and manual review was employed to identify stuttering cases in the EHR. Confirmed cases were compared to matched controls in a phenotype code (phecode) enrichment analysis to reveal conditions associated with stuttering (i.e., comorbidities). These associated phenotypes were used as proxy variables to phenotypically predict stuttering in subjects within the EHR that were not otherwise identifiable using the multi-step identification process described above.

RESULTS

The multi-step process resulted in the manually reviewed identification of 1,143 stuttering cases in the EHR. Highly enriched phecodes included codes related to childhood onset fluency disorder, adult-onset fluency disorder, hearing loss, sleep disorders, atopy, a multitude of codes for infections, neurological deficits, and body weight. These phecodes were used as variables to create a phenome risk classifier (PheRC) prediction model to identify additional high likelihood stuttering cases. The PheRC prediction model resulted in a positive predictive value of 83 %.

CONCLUSIONS

This study demonstrates the feasibility of using EHRs in the study of stuttering and found phenotypic associations. The creation of the PheRC has the potential to enable future studies of stuttering using existing EHR data, including investigations into the genetic etiology.

摘要

目的

本研究旨在识别范德比尔特大学医学中心电子健康记录(EHR)中的发育性口吃病例及相关共病,并在此基础上构建和测试口吃预测模型。

方法

采用多步骤流程,包括对医疗记录进行关键字搜索、文本挖掘算法和手动审查,以在 EHR 中识别口吃病例。通过表型代码(phecode)富集分析,将确诊病例与匹配对照进行比较,以揭示与口吃相关的疾病(即共病)。这些相关表型被用作代理变量,以对 EHR 中无法通过上述多步骤识别过程识别的受试者进行表型预测。

结果

多步骤流程导致在 EHR 中手动审查确定了 1143 例口吃病例。高度富集的 phecode 包括与儿童期发病的言语流畅障碍、成年期发病的言语流畅障碍、听力损失、睡眠障碍、特应性、多种感染代码、神经缺陷和体重相关的代码。这些 phecode 被用作变量,创建表型风险分类器(PheRC)预测模型,以识别其他高可能性的口吃病例。PheRC 预测模型的阳性预测值为 83%。

结论

本研究证明了使用 EHR 研究口吃的可行性,并发现了表型关联。PheRC 的创建有可能利用现有 EHR 数据进行口吃的未来研究,包括对遗传病因的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c4/8188400/c3974b38cd4e/nihms-1696792-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验