Suppr超能文献

研究纽约市邮政编码区域内新冠病毒阳性率的空间不平等情况。

Examining spatial inequality in COVID-19 positivity rates across New York City ZIP codes.

作者信息

Yang Tse-Chuan, Kim Seulki, Zhao Yunhan, Choi Seung-Won Emily

机构信息

Department of Sociology, University at Albany, SUNY, 351 AS, 1400 Washington Ave., Albany, NY, 12222, USA.

Department of Sociology, Anthropology, and Social Work, Texas Tech University, 66 Holden Hall, 1011 Boston Ave, Lubbock, TX, 79409, USA.

出版信息

Health Place. 2021 May;69:102574. doi: 10.1016/j.healthplace.2021.102574. Epub 2021 Apr 17.

Abstract

We aim to understand the spatial inequality in Coronavirus disease 2019 (COVID-19) positivity rates across New York City (NYC) ZIP codes. Applying Bayesian spatial negative binomial models to a ZIP-code level dataset (N = 177) as of May 31st, 2020, we find that (1) the racial/ethnic minority groups are associated with COVID-19 positivity rates; (2) the percentages of remote workers are negatively associated with positivity rates, whereas older population and household size show a positive association; and (3) while ZIP codes in the Bronx and Queens have higher COVID-19 positivity rates, the strongest spatial effects are clustered in Brooklyn and Manhattan.

摘要

我们旨在了解纽约市(NYC)邮政编码区域内2019冠状病毒病(COVID-19)阳性率的空间不平等情况。将贝叶斯空间负二项式模型应用于截至2020年5月31日的邮政编码区域数据集(N = 177),我们发现:(1)少数族裔群体与COVID-19阳性率相关;(2)远程工作者的比例与阳性率呈负相关,而老年人口和家庭规模则呈正相关;(3)虽然布朗克斯区和皇后区的邮政编码区域COVID-19阳性率较高,但最强的空间效应集中在布鲁克林区和曼哈顿区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d55/8631550/fed2cfc1f431/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验