Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria.
Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria.
J Food Sci. 2021 May;86(5):1893-1906. doi: 10.1111/1750-3841.15721. Epub 2021 Apr 25.
In order to improve the preservation conditions and stability of peroxidase catalytic properties, a number of immobilization techniques have been widely developed. In this context, we set as objective, the optimization of synthesis and stability of microcapsules of peroxidases (POD) from turnip using polylactic acid (PLA) polymer with the double emulsion technique. The surfactant, polymer, and peroxidase concentrations were the optimized parameters. According to the results obtained using the Box-Behnken design, the optimal parameters found were 1.55% of PVA, 55 mg/mL of peroxidases, and 30 mg/mL of PLA polymer with an encapsulation efficiency of 57.29%. The scanning electron microscopy morphological characterization of the optimized microcapsules showed a regular spherical structure. Fourier transform infrared spectroscopy identified the specific functional groups and chemical bonds before and after microencapsulation. The elaborated microcapsules were characterized by an average size of 200 µm (mainly from 150 to 500 µm) with a low residual moisture content (2.26%) and the encapsulated peroxidases showed better thermal stability. The in vitro release of peroxidases confirmed that the microcapsules have an excellent sustained release in simulated gastric digestion. Encapsulated peroxidases' storage under 25 and 4 °C displays a good residual POD activity with about 60% of initial activities during 80 days of storage, whereas free POD losses its initial activity within 15 and 30 days, respectively. The obtained results are promising for the development of effective therapeutic treatment of some intestinal troubles due to oxidative stress. PRACTICAL APPLICATION: Brassica rapa L. root is well known for its richness on peroxidases and thus presents an interesting potential for developing high added value products. In order to preserve the activity of extracted peroxidases (POD) from turnip roots, microencapsulation was optimized using a polylactic acid polymer. The encapsulated POD showed the maintenance of its activity under the effect of different storage conditions (time and temperature) and demonstrated resistance to gastric acidity. According to the obtained results, the encapsulation of peroxidases opens up medicine and pharmaceutical applications such as intestinal and colic protection against inflammations.
为了提高过氧化物酶催化性能的保存条件和稳定性,已经开发了许多固定化技术。在这种情况下,我们的目标是使用聚乳酸(PLA)聚合物通过双重乳液技术优化萝卜过氧化物酶(POD)的合成和稳定性。表面活性剂、聚合物和过氧化物酶浓度是优化的参数。根据 Box-Behnken 设计获得的结果,发现的最佳参数是 1.55%的 PVA、55mg/mL 的过氧化物酶和 30mg/mL 的 PLA 聚合物,包封效率为 57.29%。优化后的微胶囊的扫描电子显微镜形态学特征显示出规则的球形结构。傅里叶变换红外光谱鉴定了微封装前后的特定功能基团和化学键。所制备的微胶囊的平均粒径为 200μm(主要为 150-500μm),残余水分含量低(2.26%),包封的过氧化物酶显示出更好的热稳定性。过氧化物酶的体外释放证实,微胶囊在模拟胃消化中有很好的缓释效果。在 25 和 4°C 下储存包封的过氧化物酶,在 80 天的储存期内保持约 60%的初始酶活,而游离过氧化物酶在 15 和 30 天内分别失去其初始活性。这些结果为开发治疗某些由于氧化应激引起的肠道疾病的有效治疗方法提供了有希望的前景。实际应用:萝卜根因其富含过氧化物酶而广为人知,因此具有开发高附加值产品的有趣潜力。为了保持从萝卜根中提取的过氧化物酶(POD)的活性,使用聚乳酸聚合物对微胶囊化进行了优化。包封的 POD 显示在不同的储存条件(时间和温度)下保持其活性,并表现出对胃酸的抵抗力。根据获得的结果,过氧化物酶的包封为医学和制药应用开辟了新的途径,例如保护肠道和结肠免受炎症的侵害。