Suppr超能文献

卷积神经网络和迁移学习在前列腺癌放射治疗中的剂量体积直方图预测。

Convolutional neural network and transfer learning for dose volume histogram prediction for prostate cancer radiotherapy.

机构信息

Medical Physics Unit, Radiation Oncology Department, Consorci Sanitari de Terrassa, Terrassa, Spain.

Medical Physics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

出版信息

Med Dosim. 2021;46(4):335-341. doi: 10.1016/j.meddos.2021.03.005. Epub 2021 Apr 22.

Abstract

To adopt a transfer learning approach and establish a convolutional neural network (CNN) model for the prediction of rectum and bladder dose-volume histograms (DVH) in prostate patients treated with a VMAT technique. One hundred forty-four VMAT patients with intermediate or high-risk prostate cancer were included in this study. Data were split into two sets: 120 and 24 patients, respectively. The second set was used for final validation. To ensure the accuracy of the training data, we developed a ground-truth analysis for detecting and correcting for all potential outliers. We used transfer learning in combination with a pre-trained VGG-16 network. We dropped the fully connected layers from the VGG-16 and added a new fully connected neural network. The inputs for the CNN were a 2D image of the volumes contoured in the CT, but we only retained the geometrical information of every CT-slice. The outputs were the corresponding rectum and bladder DVH for every slice. We used a confusion matrix to analyze the performance of our model. Our model achieved 100% and 81% of true positive and true negative predictions, respectively. We have an overall accuracy of 87.5%, a misclassification rate of 12.5%, and a precision of 100%. We have successfully developed a model for reliable prediction of rectum and bladder DVH in prostate patients by applying a previously pre-trained CNN. To our knowledge, this is the first attempt to apply transfer learning to the prediction of DVHs that accounts for the ground truth problem.

摘要

采用迁移学习方法,建立卷积神经网络(CNN)模型,用于预测接受 VMAT 技术治疗的前列腺患者的直肠和膀胱剂量-体积直方图(DVH)。本研究纳入了 144 例中高危前列腺癌 VMAT 患者。将数据分为两组:一组 120 例,另一组 24 例。第二组用于最终验证。为了确保训练数据的准确性,我们开发了一种真实分析方法,用于检测和纠正所有潜在的异常值。我们采用迁移学习与预训练的 VGG-16 网络相结合。我们从 VGG-16 中删除了全连接层,并添加了一个新的全连接神经网络。CNN 的输入是 CT 中勾画的体积的二维图像,但我们只保留了每个 CT 切片的几何信息。输出是每个切片对应的直肠和膀胱 DVH。我们使用混淆矩阵来分析我们模型的性能。我们的模型对真阳性和真阴性预测的准确率分别达到了 100%和 81%。我们的总体准确率为 87.5%,误分类率为 12.5%,准确率为 100%。我们成功地开发了一种模型,通过应用先前预训练的 CNN,可对前列腺患者的直肠和膀胱 DVH 进行可靠预测。据我们所知,这是首次尝试将迁移学习应用于考虑真实情况的 DVH 预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验