Soares Lucas de Souza, Tonole Bruna, Milião Gustavo Leite, Teixeira Álvaro Vianna Novaes de Carvalho, Coimbra Jane Sélia Dos Reis, de Oliveira Eduardo Basílio
Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil.
Departamento de Física, Universidade Federal de Viçosa(UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG Brazil.
J Food Sci Technol. 2021 May;58(5):1797-1807. doi: 10.1007/s13197-020-04691-0. Epub 2020 Aug 12.
Chitosan (CH) is a biopolymer derived from chitin, which is the second most abundant polysaccharide in nature, after cellulose. Their functional groups -NH and -OH can form intermolecular interactions with water and other molecules, enabling a variety of applications for CH. -NH groups become protonated in acidic solutions, causing an increase in electrostatic repulsion between CH chains, which facilitates their dispersion in aqueous media. Aqueous solutions of acetic acid and/or acetates buffers have been used to disperse CH, but may not be adequate for technological applications, espeacially because of the strong flavor this acid confers to formulations. In this study, 0.125; 0.250; 0.500; 0.750 and 1.000 g (100 g) CH dispersions were prepared in acidic aqueous media (50 mmol L), not only with acetic (AA), but also with glycolic (GA), propionic (PA), or lactic (LA), acid aiming to evaluate the effects of biopolymer concentration and type of organic acid on: electrical conductivity, pH, density and rheological characteristics of dispersions. Moreover, ζ potential values of CH chains dispersed in these acidic aqueous media were assessed. pH, density and consistency index were influenced by the biopolymer concentration, but not by the acid type. At a given biopolymer concentration, ζ potential signs (+) and values suggested that electrostatic interactions between CH chains and counter-anions occurred, regardless of the type of the organic acid. Thus, at least from a physicochemical point of view, GA, PA or LA showed to be suitable to replace AA when preparing dispersions containing from 0.125 to 1.000 g (100 g) CH for technological purposes, such as thickening or stabilizer in formulated food products.
壳聚糖(CH)是一种由几丁质衍生而来的生物聚合物,几丁质是自然界中第二丰富的多糖,仅次于纤维素。其官能团-NH和-OH能与水及其他分子形成分子间相互作用,使壳聚糖有多种应用。-NH基团在酸性溶液中会质子化,导致壳聚糖链间静电斥力增加,有利于其在水介质中的分散。醋酸和/或醋酸盐缓冲液的水溶液已被用于分散壳聚糖,但可能不适用于技术应用,特别是因为这种酸会给配方带来强烈气味。在本研究中,在酸性水介质(50 mmol/L)中制备了0.125、0.250、0.500、0.750和1.000 g(每100 g)壳聚糖分散液,不仅使用了醋酸(AA),还使用了乙醇酸(GA)、丙酸(PA)或乳酸(LA),目的是评估生物聚合物浓度和有机酸类型对分散液的电导率、pH值、密度和流变特性的影响。此外,还评估了分散在这些酸性水介质中的壳聚糖链的ζ电位值。pH值、密度和稠度指数受生物聚合物浓度影响,但不受酸类型影响。在给定的生物聚合物浓度下,ζ电位的符号(+)和值表明,无论有机酸类型如何,壳聚糖链与抗衡阴离子之间都会发生静电相互作用。因此,至少从物理化学角度来看,在制备含0.125至1.000 g(每100 g)壳聚糖的分散液用于技术目的(如作为配方食品中的增稠剂或稳定剂)时,乙醇酸、丙酸或乳酸似乎适合替代醋酸。