Suppr超能文献

基于软数据多变量曲线回归和机器学习的COVID-19死亡率分析

COVID-19 mortality analysis from soft-data multivariate curve regression and machine learning.

作者信息

Torres-Signes Antoni, Frías María P, Ruiz-Medina María D

机构信息

Department of Statistics and Operation Research, Faculty of Sciences, University of Málaga, Málaga, Spain.

Department of Statistics and Operation Research, Faculty of Sciences, University of Jaén, Jaén, Spain.

出版信息

Stoch Environ Res Risk Assess. 2021;35(12):2659-2678. doi: 10.1007/s00477-021-02021-0. Epub 2021 Apr 19.

Abstract

UNLABELLED

A multiple objective space-time forecasting approach is presented involving cyclical curve log-regression, and multivariate time series spatial residual correlation analysis. Specifically, the mean quadratic loss function is minimized in the framework of trigonometric regression. While, in our subsequent spatial residual correlation analysis, maximization of the likelihood allows us to compute the posterior mode in a Bayesian multivariate time series soft-data framework. The presented approach is applied to the analysis of COVID-19 mortality in the first wave affecting the Spanish Communities, since March 8, 2020 until May 13, 2020. An empirical comparative study with Machine Learning (ML) regression, based on random -fold cross-validation, and bootstrapping confidence interval and probability density estimation, is carried out. This empirical analysis also investigates the performance of ML regression models in a hard- and soft-data frameworks. The results could be extrapolated to other counts, countries, and posterior COVID-19 waves.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s00477-021-02021-0.

摘要

未标注

提出了一种多目标时空预测方法,该方法涉及周期性曲线对数回归和多元时间序列空间残差相关分析。具体而言,在三角回归框架下最小化均方损失函数。同时,在我们后续的空间残差相关分析中,似然最大化使我们能够在贝叶斯多元时间序列软数据框架中计算后验模式。所提出的方法应用于分析2020年3月8日至2020年5月13日影响西班牙各自治区的第一波新冠疫情死亡情况。基于随机折叠交叉验证、自助置信区间和概率密度估计,与机器学习(ML)回归进行了实证比较研究。该实证分析还研究了ML回归模型在硬数据和软数据框架中的性能。研究结果可外推至其他计数、国家以及新冠疫情后续波次。

补充信息

在线版本包含可在10.1007/s00477-021-02021-0获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d51/8053745/3a07b9b2a1bd/477_2021_2021_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验