Suppr超能文献

考虑未检测到感染情况的2019冠状病毒病(COVID-19)传播的数学模型。以中国为例。

Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China.

作者信息

Ivorra B, Ferrández M R, Vela-Pérez M, Ramos A M

机构信息

MOMAT Research Group, Interdisciplinary Mathematics Institute, Complutense University of Madrid, Spain.

Computer Science Department, University of Almería, Spain.

出版信息

Commun Nonlinear Sci Numer Simul. 2020 Sep;88:105303. doi: 10.1016/j.cnsns.2020.105303. Epub 2020 Apr 30.

Abstract

In this paper we develop a mathematical model for the spread of the coronavirus disease 2019 (COVID-19). It is a new -SEIHRD model (not a SIR, SEIR or other general purpose model), which takes into account the known special characteristics of this disease, as the existence of infectious undetected cases and the different sanitary and infectiousness conditions of hospitalized people. In particular, it includes a novel approach that considers the fraction of detected cases over the real total infected cases, which allows to study the importance of this ratio on the impact of COVID-19. The model is also able to estimate the needs of beds in hospitals. It is complex enough to capture the most important effects, but also simple enough to allow an affordable identification of its parameters, using the data that authorities report on this pandemic. We study the particular case of China (including Chinese Mainland, Macao, Hong-Kong and Taiwan, as done by the World Health Organization in its reports on COVID-19), the country spreading the disease, and use its reported data to identify the model parameters, which can be of interest for estimating the spread of COVID-19 in other countries. We show a good agreement between the reported data and the estimations given by our model. We also study the behavior of the outputs returned by our model when considering incomplete reported data (by truncating them at some dates before and after the peak of daily reported cases). By comparing those results, we can estimate the error produced by the model when identifying the parameters at early stages of the pandemic. Finally, taking into account the advantages of the novelties introduced by our model, we study different scenarios to show how different values of the percentage of detected cases would have changed the global magnitude of COVID-19 in China, which can be of interest for policy makers.

摘要

在本文中,我们开发了一个关于2019年冠状病毒病(COVID-19)传播的数学模型。它是一个新的-SEIHRD模型(不是SIR、SEIR或其他通用模型),该模型考虑了这种疾病的已知特殊特征,例如未被检测出的感染病例的存在以及住院患者不同的卫生和传染性状况。特别地,它包含一种新颖的方法,即考虑检测出的病例数占实际总感染病例数的比例,这使得能够研究该比例对COVID-19影响的重要性。该模型还能够估计医院的床位需求。它足够复杂以捕捉最重要的影响,但又足够简单,以便利用当局在这次疫情中报告的数据,以可承受的成本确定其参数。我们研究了疾病传播国中国的具体情况(包括中国大陆、澳门、香港和台湾,如同世界卫生组织在其关于COVID-19的报告中所做的那样),并使用其报告的数据来确定模型参数,这些参数对于估计COVID-19在其他国家的传播可能是有意义的。我们展示了报告的数据与我们模型给出的估计之间的良好一致性。我们还研究了在考虑不完整报告数据时(通过在每日报告病例峰值前后的某些日期截断数据)我们模型返回的输出的行为。通过比较这些结果,我们可以估计在疫情早期阶段确定参数时模型产生的误差。最后,考虑到我们模型引入的新颖之处的优势,我们研究了不同的情景,以展示检测出的病例百分比的不同值会如何改变中国COVID-19的全球规模,这对于政策制定者可能是有意义的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbeb/7190554/86bb3a034abe/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验