用于改善基于脑电图的流动用户心理负荷评估的自适应滤波
Adaptive Filtering for Improved EEG-Based Mental Workload Assessment of Ambulant Users.
作者信息
Rosanne Olivier, Albuquerque Isabela, Cassani Raymundo, Gagnon Jean-François, Tremblay Sebastien, Falk Tiago H
机构信息
Institut National de la Recherche Scientifique - Centre Énergie, Matériaux et Télécomunication, Université du Québec, Montréal, QC, Canada.
Thales Research and Technology, Quebec City, QC, Canada.
出版信息
Front Neurosci. 2021 Apr 7;15:611962. doi: 10.3389/fnins.2021.611962. eCollection 2021.
Recently, due to the emergence of mobile electroencephalography (EEG) devices, assessment of mental workload in highly ecological settings has gained popularity. In such settings, however, motion and other common artifacts have been shown to severely hamper signal quality and to degrade mental workload assessment performance. Here, we show that classical EEG enhancement algorithms, conventionally developed to remove ocular and muscle artifacts, are not optimal in settings where participant movement (e.g., walking or running) is expected. As such, an adaptive filter is proposed that relies on an accelerometer-based referential signal. We show that when combined with classical algorithms, accurate mental workload assessment is achieved. To test the proposed algorithm, data from 48 participants was collected as they performed the Revised Multi-Attribute Task Battery-II (MATB-II) under a low and a high workload setting, either while walking/jogging on a treadmill, or using a stationary exercise bicycle. Accuracy as high as 95% could be achieved with a random forest based mental workload classifier with ambulant users. Moreover, an increase in gamma activity was found in the parietal cortex, suggesting a connection between sensorimotor integration, attention, and workload in ambulant users.
最近,由于便携式脑电图(EEG)设备的出现,在高度自然的环境中评估心理负荷受到了广泛关注。然而,在这样的环境中,运动和其他常见伪迹已被证明会严重妨碍信号质量,并降低心理负荷评估性能。在此,我们表明,传统上为去除眼部和肌肉伪迹而开发的经典脑电图增强算法,在预期参与者会运动(如行走或跑步)的环境中并非最优。因此,我们提出了一种基于加速度计参考信号的自适应滤波器。我们表明,当与经典算法相结合时,能够实现准确的心理负荷评估。为了测试所提出的算法,我们收集了48名参与者在低负荷和高负荷设置下执行修订版多属性任务组合-II(MATB-II)时的数据,他们要么在跑步机上行走/慢跑,要么使用固定的健身自行车。对于移动用户,基于随机森林的心理负荷分类器可实现高达95%的准确率。此外,在顶叶皮层发现伽马活动增加,这表明移动用户的感觉运动整合、注意力和负荷之间存在联系。