Suppr超能文献

非UMI单细胞RNA测序的非线性归一化

Non-linear Normalization for Non-UMI Single Cell RNA-Seq.

作者信息

Wu Zhijin, Su Kenong, Wu Hao

机构信息

Department of Biostatistics, Brown University, Providence, RI, United States.

Department of Computer Science, Emory University, Atlanta, GA, United States.

出版信息

Front Genet. 2021 Apr 9;12:612670. doi: 10.3389/fgene.2021.612670. eCollection 2021.

Abstract

Single cell RNA-seq data, like data from other sequencing technology, contain systematic technical noise. Such noise results from a combined effect of unequal efficiencies in the capturing and counting of mRNA molecules, such as extraction/amplification efficiency and sequencing depth. We show that such technical effects are not only cell-specific, but also affect genes differently, thus a simple cell-wise size factor adjustment may not be sufficient. We present a non-linear normalization approach that provides a cell- and gene-specific normalization factor for each gene in each cell. We show that the proposed normalization method (implemented in "SC2P" package) reduces more technical variation than competing methods, without reducing biological variation. When technical effects such as sequencing depths are not balanced between cell populations, SC2P normalization also removes the bias due to uneven technical noise. This method is applicable to scRNA-seq experiments that do not use unique molecular identifier (UMI) thus retain amplification biases.

摘要

单细胞RNA测序数据与其他测序技术产生的数据一样,都包含系统性技术噪声。这种噪声是由mRNA分子捕获和计数效率不均的综合效应导致的,比如提取/扩增效率和测序深度。我们表明,这种技术效应不仅具有细胞特异性,而且对基因的影响也不同,因此简单的按细胞大小因子调整可能并不足够。我们提出了一种非线性归一化方法,该方法能为每个细胞中的每个基因提供细胞和基因特异性的归一化因子。我们表明,所提出的归一化方法(在“SC2P”软件包中实现)比其他竞争方法能减少更多的技术变异,同时不会减少生物学变异。当细胞群体之间的测序深度等技术效应不均衡时,SC2P归一化还能消除由于技术噪声不均导致的偏差。该方法适用于不使用独特分子标识符(UMI)从而保留扩增偏差的单细胞RNA测序实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbb/8063035/e285d18a953b/fgene-12-612670-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验