Suppr超能文献

单细胞 RNA 测序数据分析方法,以提高分析性能。

scRNA-seq data analysis method to improve analysis performance.

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.

School of Medicine, Southeast University, Nanjing, China.

出版信息

IET Nanobiotechnol. 2023 May;17(3):246-256. doi: 10.1049/nbt2.12115. Epub 2023 Feb 2.

Abstract

With the development of single-cell RNA sequencing technology (scRNA-seq), we have the ability to study biological questions at the level of the individual cell transcriptome. Nowadays, many analysis tools, specifically suitable for single-cell RNA sequencing data, have been developed. In this review, the currently commonly used scRNA-seq protocols are discussed. The upstream processing flow pipeline of scRNA-seq data, including goals and popular tools for reads mapping and expression quantification, quality control, normalization, imputation, and batch effect removal is also introduced. Finally, methods to evaluate these tools in both cellular and genetic dimensions, clustering and differential expression analysis are presented.

摘要

随着单细胞 RNA 测序技术(scRNA-seq)的发展,我们有能力在单个细胞转录组水平上研究生物学问题。如今,已经开发出许多专门适用于单细胞 RNA 测序数据的分析工具。在这篇综述中,讨论了目前常用的 scRNA-seq 方案。还介绍了 scRNA-seq 数据的上游处理流程管道,包括读取映射和表达定量、质量控制、标准化、插补和批次效应去除的目标和流行工具。最后,还介绍了在细胞和遗传维度上评估这些工具的方法,包括聚类和差异表达分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2a1/10190501/2cf045b7d51d/NBT2-17-246-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验