Suppr超能文献

无唯一分子标识符的单细胞 RNA-seq 读数的分位数归一化。

Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, USA.

Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Genome Biol. 2020 Jul 3;21(1):160. doi: 10.1186/s13059-020-02078-0.

Abstract

Single-cell RNA-seq (scRNA-seq) profiles gene expression of individual cells. Unique molecular identifiers (UMIs) remove duplicates in read counts resulting from polymerase chain reaction, a major source of noise. For scRNA-seq data lacking UMIs, we propose quasi-UMIs: quantile normalization of read counts to a compound Poisson distribution empirically derived from UMI datasets. When applied to ground-truth datasets having both reads and UMIs, quasi-UMI normalization has higher accuracy than competing methods. Using quasi-UMIs enables methods designed specifically for UMI data to be applied to non-UMI scRNA-seq datasets.

摘要

单细胞 RNA 测序 (scRNA-seq) 对单个细胞的基因表达进行测序。独特分子标识符 (UMI) 去除聚合酶链反应 (PCR) 产生的读段计数中的重复,PCR 是主要的噪声来源。对于缺少 UMI 的 scRNA-seq 数据,我们提出了准 UMI:通过从 UMI 数据集中推导出的复合泊松分布对读段计数进行分位数归一化。当应用于同时具有读段和 UMI 的真实数据集时,准 UMI 归一化比竞争方法具有更高的准确性。使用准 UMI 可以使专门为 UMI 数据设计的方法应用于非 UMI scRNA-seq 数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c9c/7333325/fe79ab43bdf0/13059_2020_2078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验