Suppr超能文献

PMDFI:基于高阶特征交互预测miRNA与疾病的关联

PMDFI: Predicting miRNA-Disease Associations Based on High-Order Feature Interaction.

作者信息

Tang Mingyan, Liu Chenzhe, Liu Dayun, Liu Junyi, Liu Jiaqi, Deng Lei

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Front Genet. 2021 Apr 9;12:656107. doi: 10.3389/fgene.2021.656107. eCollection 2021.

Abstract

MicroRNAs (miRNAs) are non-coding RNA molecules that make a significant contribution to diverse biological processes, and their mutations and dysregulations are closely related to the occurrence, development, and treatment of human diseases. Therefore, identification of potential miRNA-disease associations contributes to elucidating the pathogenesis of tumorigenesis and seeking the effective treatment method for diseases. Due to the expensive cost of traditional biological experiments of determining associations between miRNAs and diseases, increasing numbers of effective computational models are being used to compensate for this limitation. In this study, we propose a novel computational method, named PMDFI, which is an ensemble learning method to predict potential miRNA-disease associations based on high-order feature interactions. We initially use a stacked autoencoder to extract meaningful high-order features from the original similarity matrix, and then perform feature interactive learning, and finally utilize an integrated model composed of multiple random forests and logistic regression to make comprehensive predictions. The experimental results illustrate that PMDFI achieves excellent performance in predicting potential miRNA-disease associations, with the average area under the ROC curve scores of 0.9404 and 0.9415 in 5-fold and 10-fold cross-validation, respectively.

摘要

微小RNA(miRNA)是非编码RNA分子,对多种生物学过程有重要贡献,其突变和失调与人类疾病的发生、发展及治疗密切相关。因此,识别潜在的miRNA-疾病关联有助于阐明肿瘤发生的发病机制并寻找有效的疾病治疗方法。由于传统生物学实验确定miRNA与疾病之间关联的成本高昂,越来越多有效的计算模型被用于弥补这一局限性。在本研究中,我们提出了一种名为PMDFI的新型计算方法,这是一种基于高阶特征交互来预测潜在miRNA-疾病关联的集成学习方法。我们首先使用堆叠自编码器从原始相似性矩阵中提取有意义的高阶特征,然后进行特征交互学习,最后利用由多个随机森林和逻辑回归组成的集成模型进行综合预测。实验结果表明,PMDFI在预测潜在miRNA-疾病关联方面表现出色,在5折和10折交叉验证中,ROC曲线下面积的平均得分分别为0.9404和0.9415。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddb/8063614/63f09a757eeb/fgene-12-656107-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验