Nexha Albenc, Carvajal Joan Josep, Pujol Maria Cinta, Díaz Francesc, Aguiló Magdalena
Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain.
Nanoscale. 2021 May 7;13(17):7913-7987. doi: 10.1039/d0nr09150b. Epub 2021 Apr 26.
The development of lanthanide-doped non-contact luminescent nanothermometers with accuracy, efficiency and fast diagnostic tools attributed to their versatility, stability and narrow emission band profiles has spurred the replacement of conventional contact thermal probes. The application of lanthanide-doped materials as temperature nanosensors, excited by ultraviolet, visible or near infrared light, and the generation of emissions lying in the biological window regions, I-BW (650 nm-950 nm), II-BW (1000 nm-1350 nm), III-BW (1400 nm-2000 nm) and IV-BW (centered at 2200 nm), are notably growing due to the advantages they present, including reduced phototoxicity and photobleaching, better image contrast and deeper penetration depths into biological tissues. Here, the different mechanisms used in lanthanide ion-doped nanomaterials to sense temperature in these biological windows for biomedical and other applications are summarized, focusing on factors that affect their thermal sensitivity, and consequently their temperature resolution. Comparing the thermometric performance of these nanomaterials in each biological window, we identified the strategies that allow boosting of their sensing properties.
镧系掺杂的非接触式发光纳米温度计的发展,因其多功能性、稳定性和窄发射带分布而具备准确性、高效性以及快速诊断工具的特点,这促使了传统接触式热探针的更新换代。镧系掺杂材料作为温度纳米传感器,由紫外光、可见光或近红外光激发,并产生位于生物窗口区域的发射光,即I区生物窗口(650纳米 - 950纳米)、II区生物窗口(1000纳米 - 1350纳米)、III区生物窗口(1400纳米 - 2000纳米)和IV区生物窗口(以2200纳米为中心),由于其具有降低光毒性和光漂白、更好的图像对比度以及对生物组织更深的穿透深度等优势,其应用显著增加。在此,总结了镧系离子掺杂纳米材料在这些生物窗口中用于生物医学及其他应用的温度传感的不同机制,重点关注影响其热灵敏度进而影响其温度分辨率的因素。通过比较这些纳米材料在每个生物窗口中的测温性能,我们确定了提高其传感性能的策略。