Suppr超能文献

基于脑电图的指标,用于在汽车应用中及时检测用户的困倦状态。

EEG-Based Index for Timely Detecting User's Drowsiness Occurrence in Automotive Applications.

作者信息

Di Flumeri Gianluca, Ronca Vincenzo, Giorgi Andrea, Vozzi Alessia, Aricò Pietro, Sciaraffa Nicolina, Zeng Hong, Dai Guojun, Kong Wanzeng, Babiloni Fabio, Borghini Gianluca

机构信息

Laboratory of Industrial Neuroscience, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.

BrainSigns srl, Rome, Italy.

出版信息

Front Hum Neurosci. 2022 May 20;16:866118. doi: 10.3389/fnhum.2022.866118. eCollection 2022.

Abstract

Human errors are widely considered among the major causes of road accidents. Furthermore, it is estimated that more than 90% of vehicle crashes causing fatal and permanent injuries are directly related to mental tiredness, fatigue, and drowsiness of the drivers. In particular, driving drowsiness is recognized as a crucial aspect in the context of road safety, since drowsy drivers can suddenly lose control of the car. Moreover, the driving drowsiness episodes mostly appear suddenly without any prior behavioral evidence. The present study aimed at characterizing the onset of drowsiness in car drivers by means of a multimodal neurophysiological approach to develop a synthetic electroencephalographic (EEG)-based index, able to detect drowsy events. The study involved 19 participants in a simulated scenario structured in a sequence of driving tasks under different situations and traffic conditions. The experimental conditions were designed to induce prominent mental drowsiness in the final part. The EEG-based index, so-called , was developed and validated to detect the driving drowsiness of the participants. The MDrow index was derived from the Global Field Power calculated in the Alpha EEG frequency band over the parietal brain sites. The results demonstrated the reliability of the proposed MDrow index in detecting the driving drowsiness experienced by the participants, resulting also more sensitive and timely sensible with respect to more conventional autonomic parameters, such as the EyeBlinks Rate and the Heart Rate Variability, and to subjective measurements (self-reports).

摘要

人为失误被广泛认为是道路交通事故的主要原因之一。此外,据估计,超过90%导致致命和永久性伤害的车辆碰撞事故与驾驶员的精神疲劳、疲惫和困倦直接相关。特别是,驾驶困倦被认为是道路安全背景下的一个关键因素,因为困倦的驾驶员可能会突然失去对汽车的控制。此外,驾驶困倦发作大多突然出现,没有任何先前的行为迹象。本研究旨在通过多模态神经生理学方法对汽车驾驶员困倦的发作进行特征描述,以开发一种基于合成脑电图(EEG)的指标,能够检测困倦事件。该研究让19名参与者在不同情况和交通条件下的一系列驾驶任务构成的模拟场景中进行实验。实验条件设计为在最后部分诱发明显的精神困倦。基于脑电图的指标,即所谓的MDrow指标,被开发并验证用于检测参与者的驾驶困倦。MDrow指标源自于在顶叶脑区的阿尔法脑电图频段计算出的全局场功率。结果证明了所提出的MDrow指标在检测参与者经历的驾驶困倦方面的可靠性,相对于更传统的自主参数,如眨眼率和心率变异性以及主观测量(自我报告),该指标也更敏感且更及时灵敏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9661/9164820/1fc3efb08db4/fnhum-16-866118-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验