Suppr超能文献

《CoV19-OM 重症监护评分的制定和验证:来自阿曼一项回顾性队列研究中对实验室确诊 SARS-CoV-2 患者的早期 ICU 识别》

Development and validation of the CoV19-OM intensive care unit score: An early ICU identification for laboratory-confirmed SARS-CoV-2 patients from a retrospective cohort study in Oman.

机构信息

Department of Information Technology, University of Technology and Applied Science - HCT, Oman.

Infectious Diseases Department, Royal Hospital, Oman.

出版信息

Int J Infect Dis. 2022 Apr;117:241-246. doi: 10.1016/j.ijid.2021.04.069. Epub 2021 Apr 24.

Abstract

OBJECTIVE

To develop and validate a clinical score that will identify potential admittance to an intensive care unit (ICU) for a coronavirus disease 2019 (COVID-19) case.

MATERIALS AND METHODS

The clinical scoring system was developed using a least absolute shrinkage and selection operator logistic regression. The prediction algorithm was constructed and cross-validated using a development cohort of 313 COVID-19 patients, and was validated using an independent retrospective set of 64 COVID-19 patients.

RESULTS

The majority of patients were Omani in nationality (n = 181, 58%). Multivariate logistic regression identified eight independent predictors of ICU admission that were included in the clinical score: hospitalization (OR, 1.079; 95% CI, 1.058-1.100), absolute lymphocyte count (OR, 0.526; 95% CI, 0.379-0.729), C-reactive protein (OR, 1.009; 95% CI, 1.006-1.011), lactate dehydrogenase (OR, 1.0008; 95% CI, 1.0004-1.0012), CURB-65 score (OR, 2.666; 95% CI, 2.212-3.213), chronic kidney disease with an estimated glomerular filtration rate of less than 70 (OR, 0.249; 95% CI, 0.155-0.402), shortness of breath (OR, 3.494; 95% CI, 2.528-6.168), and bilateral infiltrates in chest radiography (OR, 6.335; 95% CI, 3.427-11.713). The mean area under a curve (AUC) for the development cohort was 0.86 (95% CI, 0.85-0.87), and for the validation cohort, 0.85 (95% CI, 0.82-0.88).

CONCLUSION

This study presents a web application for identifying potential admittance to an ICU for a COVID-19 case, according to a clinical risk score based on eight significant characteristics of the patient (http://3.14.27.202/cov19-icu-score/).

摘要

目的

开发并验证一种临床评分系统,以确定 2019 年冠状病毒病(COVID-19)病例是否需要入住重症监护病房(ICU)。

材料与方法

采用最小绝对值收缩和选择算子逻辑回归方法建立临床评分系统。采用 313 例 COVID-19 患者的开发队列构建并交叉验证预测算法,并采用 64 例 COVID-19 患者的独立回顾性队列进行验证。

结果

大多数患者为阿曼国籍(n=181,58%)。多变量逻辑回归确定了 8 个 ICU 入住的独立预测因素,这些因素被纳入临床评分:住院(OR,1.079;95%CI,1.058-1.100)、绝对淋巴细胞计数(OR,0.526;95%CI,0.379-0.729)、C 反应蛋白(OR,1.009;95%CI,1.006-1.011)、乳酸脱氢酶(OR,1.0008;95%CI,1.0004-1.0012)、CURB-65 评分(OR,2.666;95%CI,2.212-3.213)、肾小球滤过率<70 的慢性肾脏病(OR,0.249;95%CI,0.155-0.402)、呼吸急促(OR,3.494;95%CI,2.528-6.168)和胸部 X 线双侧浸润(OR,6.335;95%CI,3.427-11.713)。开发队列的平均曲线下面积(AUC)为 0.86(95%CI,0.85-0.87),验证队列为 0.85(95%CI,0.82-0.88)。

结论

本研究根据患者 8 项重要特征(http://3.14.27.202/cov19-icu-score/),提出了一种基于临床风险评分的 COVID-19 病例 ICU 入住可能性识别的网络应用程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e296/8065243/4d193eaff425/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验