Suppr超能文献

在合成巨大囊泡中增加跨膜 NADH 氧化。

Scale up of Transmembrane NADH Oxidation in Synthetic Giant Vesicles.

机构信息

Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.

Combinatorial Neuroimaging Core Facility, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany.

出版信息

Bioconjug Chem. 2021 May 19;32(5):897-903. doi: 10.1021/acs.bioconjchem.1c00096. Epub 2021 Apr 27.

Abstract

The transfer of electrons across and along biological membranes drives the cellular energetics. In the context of artificial cells, it can be mimicked by minimal means, while using synthetic alternatives of the phospholipid bilayer and the electron-transducing proteins. Furthermore, the scaling up to biologically relevant and optically accessible dimensions may provide further insight and allow assessment of individual events but has been rarely attempted so far. Here, we visualized the mediated transmembrane oxidation of encapsulated NADH in giant unilamellar vesicles via confocal laser scanning and time-correlated single photon counting wide-field microscopy. To this end, we first augmented phospholipid membranes with an amphiphilic copolymer in order to check its influence on the oxidation kinetics spectrophotometrically. Then, we scaled up the compartments and followed the process microscopically.

摘要

电子在生物膜中的跨膜转移和沿膜转移驱动着细胞的能量学。在人工细胞的背景下,可以通过最小的手段来模拟这种转移,同时使用磷脂双层和电子转导蛋白的合成替代品。此外,扩大到与生物学相关和光学可及的尺寸可能会提供进一步的见解,并允许评估单个事件,但迄今为止很少有尝试。在这里,我们通过共焦激光扫描和时间相关的单光子计数宽场显微镜可视化了封装在巨大的单层囊泡中的 NADH 的介体跨膜氧化。为此,我们首先用两亲性共聚物增强磷脂膜,以通过分光光度法检查其对氧化动力学的影响。然后,我们扩大了隔间的尺寸,并进行了微观观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9af/8154200/e879db64384d/bc1c00096_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验